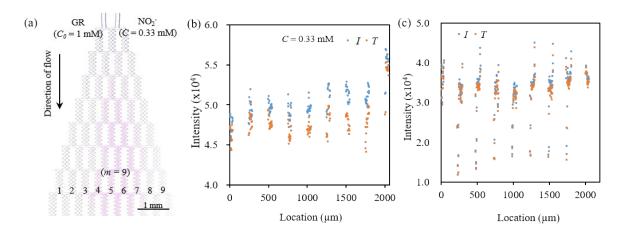
Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information


Optofluidic differential colorimetry for rapid nitrite determination

Y. Shi, ^{ab} H. L. Liu, ^a X. Q. Zhu, ^{ab} J. M. Zhu, ^a Y. F. Zuo, ^{ab} Y. Yang, *ab F. H. Jiang, ^c C. J. Sun, ^c W. H. Zhao ^d and X. T. Han ^d

^aKey Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & technology, Wuhan University, Wuhan 430072, China. E-mail: yangyiys@whu.edu.cn

^bShenzhen Research Institute, Wuhan University, Shenzhen 518000, China ^cThe First Institute of Oceanography, SOA, China ^dInstitute of Oceanology, Chinese Academy of Sciences, China

Experimental results when c = 0.33 mM and the light intensity when absorption cells are affected by impurity:

S1. The micrograph (a) and transmitted light intensity (b) of microfluidic network when the concentration ratio of colour reagent and nitrite equals 3:1. (c) The transmitted light intensity in detection points measured under the influence of impurities.