## **Supplementary Information**

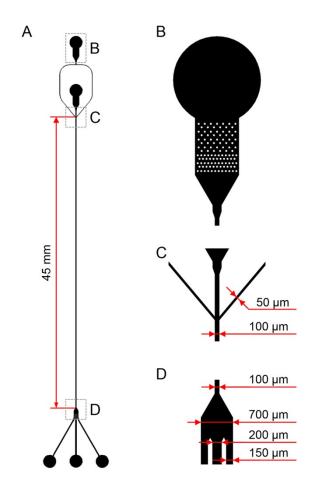
## Label-Free Isolation of Rare Tumor Cells from Untreated Whole Blood by Interfacial

**Viscoelastic Microfluidics** 

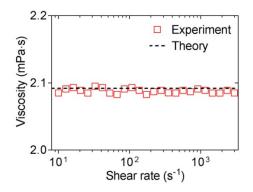
Fei Tian,<sup>1,2, +</sup> Lili Cai,<sup>4, +</sup> Jianqiao Chang,<sup>2</sup> Shanshan Li,<sup>1</sup> Chao Liu,<sup>2,3</sup>★ Tiejun Li,<sup>1</sup>★ and Jiashu Sun<sup>2,3</sup>★

<sup>1</sup> School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China

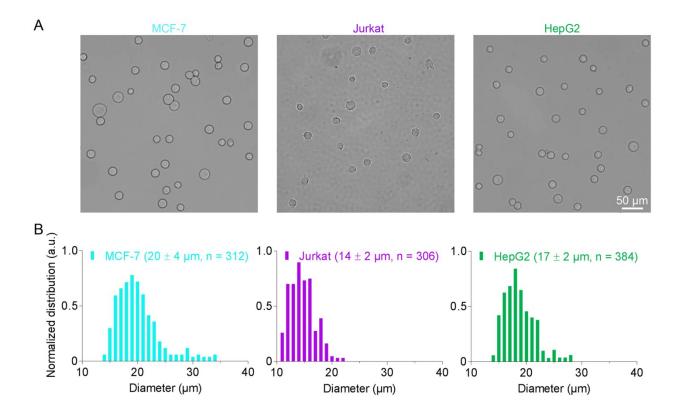
<sup>2</sup> CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China


<sup>3</sup> University of Chinese Academy of Sciences, Beijing 100049, China

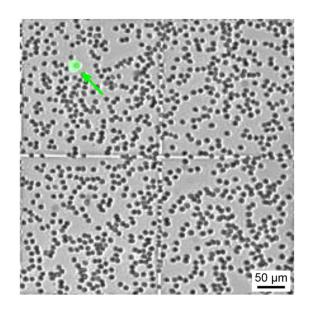
<sup>4</sup>Department of Geriatric Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China


<sup>+</sup>These authors contributed equally.

E-mail address: liuc@nanoctr.cn; li\_tiejun@hebut.edu.cn; sunjs@nanoctr.cn


Tel:+86-10-82545621; Fax: +86-10-82545621




**Figure S1.** (A) CAD design showing that the co-flow microfluidic device consists of a separation section that is 45 mm long and 100  $\mu$ m wide, (B, C) two inlets with debris filters for core and sample fluids, respectively, and (D) three outlets for tumor cells (one center outlet with a width of 250  $\mu$ m) and blood cells (two side outlets with a width of 150  $\mu$ m), respectively. The entire microchannel has a uniform depth of 50  $\mu$ m.



**Figure S2.** Rheological measurement (markers) and theoretical calculation (dashed line) of shear viscosities of 0.005 % PEO solution.



**Figure S3.** (A) Representative bright-field images and (B) size distributions (mean  $\pm$  s.d.) of MCF-7, Jurkat, and HepG2 cells.



**Figure S4.** Cell counting by hemocytometer after microfluidic separation of whole blood spiked with HepG2 cells (green, initially spiked at a concentration of 50 cells mL<sup>-1</sup>).