Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2018

Supporting Information

A liver-immune coculture array for predicting systemic drug-induced skin sensitization Lor Huai Chong¹, Huan Li⁵, Isaac Wetzel⁶, Hansang Cho⁶, Yi-Chin Toh^{1-4*}

¹Department of Biomedical Engineering, National University of Singapore, 4, Engineering Drive 3, E4-04-10, Singapore 117583

²Singapore Institute for Neurotechnology, 28 Medical Drive, #05-corridor, Singapore 117456
³NUS Tissue Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456

⁴Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore (NUS), MD6, 14 Medical Drive, #14-01, Singapore 117599

⁵School of Applied Science, Temasek Polytechnic, 21 Tampines Avenue 1, Singapore 529757

⁶Department of Mechanical Engineering and Engineering Science, Department of Biological Sciences, The Nanoscale Science Program, Center for Biomedical Engineering and Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA

SI Fig. 1. Hepatocyte conditioned medium attenuates U937 activation response. Gene expression changes in U937 cells after 48 hours of incubation with either carbamezapine (CBZ) or HepaRG-hepatocyte conditioned medium containing CBZ reactive metabolites. Conditioned medium was collected from HepaRG-derived hepatocyte cultures that were incubated with 100 μ M CBZ for 6 hours in human William E (a, b) and Krebs-Henseleit Buffer (KHB) (c, d) to generate the reactive drug metabolites. The HepaRG conditioned medium: U937 culture medium (1:5, 1:10 and 1:20 as shown in the black bars). The white bars denote the monoculture of U937 with the parent drug (CBZ) in a corresponding ratio of human William E (a, b) or KHB (c, d) to U937 culture medium to ensure a fair comparison. Data are average \pm SEM of 2 independent experiments for human William E and 3 independent experiments for KHB. Asterisks denote the statistical significant differences (Student T test, *p<0.05).

SI Fig. 2. Generation of drug metabolites by HepaRG-derived hepatcocytes monolayer. (a) carbamazepine(CBZ)'s reactive metabolites: 10,11-epoxide carbamazepine (CBZ-E), 2 hydroxy carbamazepine (2-OH CBZ), 3 hydroxy carbamazepine (3-OH CBZ) (b) phenytoin's reactive metabolites, 5-(4'-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) (c) allopurinol's metabolites, oxipurinol. Data are average \pm SEM of 3 independent experiments. Asterisks denote statistical significant differences (Student T test, *p<0.05; **p<0.01).

SI Table 1. List of primers that were used in this study

	Table 1a Human Hepatocytes Primer				
Primer	Forward	Reverse			
GAPDH	GAGTCAACGGATTTGGTCGT	GACAAGCTTCCCGTTCTCAG			
CYP1A2	GGGCCGGCCTGACCTCTACA	CAGGGGGGTTCCCGGAGGAGG			
CYP3A4	AAGTCGCCTCGAAGATACACA	AAGGAGAGAACACTGCTCGTG			
CYP2B6	AGACGCCTTCAATCCTGACC	CCTTCACCAAGACAAATCCG			
HNF4A	AGAGCAGGAATGGGAAGGAT	GCAGTGGCTTCAACATGAGA			
PXR	CCAGGACATACACCCCTTTG	CTACCTGTGATGCCGAACAA			
Albumin	ACACAAGCCCAAGGCAACAA	TATCGTCAGCCTTGCAGCAC			

Table 1b Human U937 (APC Activation) Primer					
Primer	Forward	Reverse			
IL8	ATGACTTCCAAGCTGGCCGTGGCT	TCTCAGCCCTCTTCAAAAACTTCTC			
IL1B	ACAGATGAAGTGCTCCTTCCA	GTCGGAGATTCGTAGCTGGAT			
CD86	GTATTTTGGCAGGACCAGGA	GCCGCTTCTTCTTCTTCCAT			

	-	-	
Cell Types	Markers	Primary Antibody	Secondary Antibody
	CYP3A4	rabbit anti-CYP3A4(1:100)	Alexa Fluor® 555 donkey anti-
		(Abcam, Cambridge, UK)	rabbit IgG (1:1000)
			(Life Technologies)
HHS	CK19	mouse anti-CK19(1:100)	Alexa Fluor® 647 donkey anti-
		(Abcam, Cambridge, UK)	mouse $IgG(1:1000)$
			(Life Technologies)
	Albumin	Anti-Human Serum Albumin	
		antibody (FITC) (Abcam,	
		Cambridge, UK)	
U937	CD86+	Rabbit anti-CD86 antibody	Goat anti rabbit IgG (Alexa
		(Abcam, Cambridge,	Fluor® 488) (1:1000)
		UK)(1:100)	(Life Technologies)
	DAPI	Life Technologies (1:1000)	

SI Table 2. The primary and secondary antibody that used in this study

SI Table 3. The molecular weight of fluorescein sodium salt, parent drugs and metabolites that used in this study

Items	Molecular Weight
Fluorescein sodium salt	376.27
Carbamazepine	236.269
Carbamazepine Metabolites	252.273
(2OH CBZ, 3OH CBZ, 10,11 Epoxide	
CBZ)	
Phenytoin	252.268
Phenytoin Metabolites	268.27
5-(4'-hydroxyphenyl)-5-phenylhydantoin	
Allopurinol	136.11
Oxipurinol	152.11