Rapid detection of multiple respiratory viruses based on microfluidic

isothermal amplification and a real-time colorimetric method

Ruili Wang,^{†abc}, Rongtao Zhao,^{†a} Yang Li,^a Wen Kong,^a Xudong Guo,^a Yi Yang,^a Feng Wu,^a Wanying Liu,^a

Hongbin Song^a* and Rongzhang Hao^a*

^a Institute of Disease Control and Prevention, PLA, Beijing 100071, China ^b Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key laboratory of Molecular Recognition and Function, CAS research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

⁺ These authors contributed equally to the work.

* Corresponding authors: hrongzhang@163.com (R.H.), hongbinsong@263.net (H.S.) Authors' contributions: Rongzhang Hao, Ruili Wang, and Hongbin Song designed the research plan; Ruili Wang, Yang Li, Wen Kong and Xudong Guo performed the experiments; Ruili Wang, Rongtao Zhao, Yi Yang, Feng Wu and Wanying Liu wrote the paper.

Contents

- 1. Table S1
- 2. Table S2
- 3. Figure S1
- 4. Figure S2
- 5. Figure S3
- 6. Figure S4
- 7. Figure S5

Target gene (subtype)	primer	Sequence (5' to 3')		
	F3	AAGCTCAGCAAATCCTACA		
	B3	TCCCTCACTTTGGGTCTT		
Flu A virus HA gene	FIP	GACTTTGTTGGTCAGCACTAGTAGAAAAGGGAAAGAAGTCCTCG		
(H1N1)	BIP	TCTATCAGAATGCAGATGCATATGTTGCTATTTCCGGCTTGAA		
	LF	GATGGTGAATGCCCCATAGC		
	LB	TTTTGTGGGGTCATCAAGATACAG		
Flu A virus HA gene (H3N2)	F3	CTACTGAGCTGGTTCAGAA		
	B3	GGCATAATCCGGCACATC		
	FIP	AGAGCATCTATTAGTGTGCAGTTTTCTCAATAGGTGAAATATGC GAC		
	BIP	GAGACCCTCAGTGTGATGGCGTAACAGTTGCTGTAGGCT		
	LF	CCATCAAGGATCTGATGAGGACT		
	LB	GAAATGGGACCTTTTTGTTGAACG		
	F3	GCAATCAACGACTCAACAA		
	B3	ACAGTCCTCTTTTCTTCTTCT		
	FIP	AGTTAATCGCCCCCATCGGATGAAAAGTGAAGTGGAATATGGTA		
Flu A virus HA gene	BIP	ACCATCGGAGAATGTCCCAAATACTCTCTCTTTGAGGACTATTTC		
(H5N1)		TG		
	LF	TGACACCTGGTGTTGCAGT		
	LB	AAACAAATTAGTCCTTGCGACTGGG		
	F3	TGAGAGGCGAGAAGGAAG		
	B3	GAGCCATTTCATTTCTGCA		
Flu A virus HA gene	FIP	GCCTGATTCTCTGAGAATTTGCCTTGATGTCTGTTATCCTGGGA		
(H7N9)	BIP	TGACAAGGAAGCAATGGGATTCTCCTGATCTCCTACATGCA		
	LF	CAGAGCTTCTTCATTCACGAATT		
	LB	ACAGTGGAATAAGAACTAATGGAGC		
Flu B virus HA gene	F3	TGATCTCAGAGCTGACACT		
	B3	GCAGCTATCCTGTCTAAGC		
	FIP	TAGATGCTCGTCTTCACTGTTTATTATAAGCTCACAAATAGAACT		
		TGC		
	BIP	AACTAAAGAAAATGCTGGGTCCCGCATTTGTGTTTGGTTTCGA		
	LF	CCTTCGTTGGAAAGCAAGACT		
	LB	TCT GCTGTAGACA TAGGAAACGG		
	F3	GTCTACTGGTCGCTCCCT		
	B3	GAGGATCTGGTTCTCAGGGA		
Human adenovirus	FIP	ACCCACCACTGGGTAGTTGTTGCATGATGCAAGACCCAGTCA		
Hexon gene	BIP	GAGCAAGCCGTGTACTCTCAGCCGGTTGAAGACGTGCGTG		
	LF	TGTCTTGTGGAGCGGAAGG		
	LB	AGCTCCGACAGGCCACTTC		
Negative control	F3	GCGCAAGGTTACAACATCAC		

Table S1 Sequences of LAMP primers used for amplifying respiratory virus genes

	B3	GCGTGACATTCCAGAACACA
FI		CGCGTTCACGAAACCGTGCTGATACTCACGCCTTGTTCGA
	BIP	TTGGACATCAACCGCTCATCGTGACGCTGCACACTCAGAG
	LF	TCGGGCGCAGAAGTTAGC
	LB	CTGTCGATTACATGTACACCCAC
Positive control	F3	CCGCGTGTATGAAGAAGG
	B3	AGACTCAAGCTGACCAGT
	FIP	TGCTGGCACGGAGTTAGCGAGGAAGGTGTTGTGGTTAA
	BIP	GCGGTAATACGGAGGGTGCACTTAATCAACCGCCTGC
	LF	GGTAACGTCAATTGCTGCG
	LB	AATCGGAATTACTGGGCGTAA

Target gene (Accession)	PCR primer	Sequence (5' to 3')
Influenza A (111N1) virue	F	AAATCTAGTGGTACCGAGATATGCA
Innuenza A (mini) virus	R	GGGAGGCTGGTGTTTATAGCAC
Influenza A (H2N2) virue	F	ATCAGGGAGAGTCACAGTCTC
IIIIueliza A (HSNZ) VIIUS	R	ATGCTTCCATTTGGAGTGATGC
Influenza A (IIENIA) virue	F	GGAGTTCTTCTGGACAA
Influenza A (HSN1) virus	R	GTCGCAAGGACTAATCT
Influenza A (HZNO) virue	F	TTCCTGAGATTCCAAA
IIIIueliza A (H7N9) virus	R	GGTTGGTTTTTTCTATAAGCCG
Influenza D. virus	F	GGGACATGAACAACAAGATGC
IIIIIueiiza B Virus	R	TGTCAGCTATTATGGAGCTG
Human adapavirus	F	TTCCCCATGGCICAYAACAC
Human adenovirus	R	CCCTGGTAKCCRATRTTGTA
Nogativo control	F	AATGTTCACCTGGTT
	R	TTATGAATCCAATCA

Table S2 Sequences of PCR primers used for amplifying respiratory virus genes

Fig. S1. The schematic drawing of the measurement instrument, A represent internal structure of the instrument, B represent external structure of the instrument, and C represent the detection instrument.

Magnification of the eight microchambers

Magnification of the eight microchambers

Fig. S2. Colorimetric change of microfluidic chip after reaction. (A) The whole microfluidic chip before the reaction. (B) Magnification of the eight microchambers before the reaction. (C) The whole microfluidic chip after the reaction. (D) Magnification of eight microchambers after the reaction and the color changes observed after reaction on the chip. Positive reactions occurred in microchambers 3, 5 and 7 (microchambers 1, 2, 4, 6, and 8 all are embedded negative controls, while microchambers 3, 5, and 7 are all embedded H1N1 primer, the detection samples are FluA H1N1 virus).

Fig. S3. Detection results of multiple respiratory viruses. A show the real-time colorimetric detection results of FluA H1N1, FluA H3N2, FluA H5N1, FluA H7N9, FluB, HAdV, positive control, and negative control, respectively. B show the gel electrophoresis detection result after real-time colorimetric detection of FluA H1N1, FluA H3N2, FluA H5N1, FluA H7N9, FluB, HAdV, positive control, and negative control, respectively.

Fig. S4. Gel electrophoresis patterns. Sensitivity evaluation using 10-fold serial dilutions of standards: sensitivity of the system for different viruses. Panels A–F show PCR results for FluA H1N1, FluA H3N2, FluA H5N1, FluA H7N9, FluB, and HAdV, respectively. Within each panel, lanes 1–8 represent test results with 1×10^7 , 1×10^6 , 1×10^5 , 1×10^4 , 1×10^3 , 1×10^2 , 10 fg/µl, and the negative control, respectively.

Fig. S5. Results for Real-time PCR detection. Evaluation of sensitivity using 10-fold serial dilutions of standards: sensitivity of the system for different viruses (FluA H1N1, FluA H3N2, FluA H5N1, FluA H7N9, FluB, and HAdV, respectively).