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Supplemental Information

Figure s1. Illustration of 3D printing approach for one-step producing 3D mold and replicating 
PDMS microfluidic device integrated with cell culture and downstream exosome isolation, surface 
engineering, and on-demand photo release. 

Figure s2. Investigation of the side-effect of UV exposure on exosome molecular contents in terms 
of proteins, DNAs and RNAs.
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Figure S3. The fluorescence intensity analysis for showing the cellular uptake rate of gp-100 
engineered exosomes and native exosomes.

Figure s4. Human leukocytes culture under different stimulation conditions: 1) negative control 
is the leukocytes without any stimulation; 2) PWM protein stimulation as the positive control; 3) 
The gp-100 engineered exosome stimulation.  



Figure s5. ex vivo testing of surface-engineered exosomes for activating transgenic mice spleen-
derived CD8+ T cells. a) depicts representative flow plots from wells containing T cells + 
Activated JAWS cells with increasing concentrations of the gp100-engineered exosomes. The 
spiking gp-100 in M serves as positive control.  b) depicts the cumulative data from all four 
culture conditions showing the CD8+ T cell dividing rate under stimulation. The results are 
representative of 3 independent experiments with three duplicate wells for each culture condition 
(RSD  ~ 5%).

Tumor peptide synthesis and characterization
The protocols follow standard Fmoc chemistry. The peptides where cleaved using a solution of 
92.5:2.5:2.5:2.5 TFA:TIPS:H2O:DODt and the crude peptides where purified using preparative 
HPLC (gradients of water/ acetonitrile (90:10 to 0:100 containing 0.1% TFA over 40 min) and 
lyophilized to obtain white powder. Analytical HPLC traces were acquired using an Agilent 1100 
quaternary pump and a Hamilton PRP-1 (polystyrene-divinylbenzene) reverse phase analytical 
column (7 μm particle size, 4 mm x 25 cm) with UV detection at 210 nm. The eluents were heated 
to 45 °C to reduce separation of rotational isomers, and elution was achieved with gradients of 
water/ acetonitrile (90:10 to 0:100 containing 0.1% TFA) over 20 min. Low-resolution mass 
spectra (LRMS) were obtained using a Waters Micromass ZQ 4000 instrument with ESI+ 
ionization.

Peptide gp-100 Sequence: RLMKQDFSV
Chemical Formula: C49H82N14O14S1
Molecular Weight: 1123.33



Analytical HPLC profile of sythesized peptide gp-100. Retention time = 7.51min (monitored at 210 nm). 
Purity > 90% by HPLC.

Low-resolution mass spectrum of peptide sythesized gp-100

Peptide MART-1 Sequence: ELAGIGILTV
Chemical Formula: C45H80N10O14
Molecular Weight: 985.18

Analytical HPLC profile peptide MART-1. Retention time = 9.80 min (monitored at 210 nm). Purity > 90% by HPLC

Low-resolution mass spectrum of peptide MART-1


