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Figure S-1. Numerically and analytically calculated electric potential distributions of Fig. 2a 
at 𝒛 = 𝟎 (𝑽𝟎 = 1 V, 𝒅 = 20 µm), where the analytic electric potential was 𝝋(𝒙, 𝒛 = 𝟎) =

∑ 𝑮𝒎 𝐜𝐨𝐬
𝒎𝝅𝒙

𝒂
𝐜𝐨𝐬𝐡 ቀ−

𝒎𝝅

𝒂
𝒉ቁஶ

𝒎ୀ𝟎  under the truncated number of 𝒎 from 0 to 𝑴 [1]. 
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Table S-1. Calculated 𝑮𝒎 with 𝒎 for Fig. 2a and Fig. S-1 (𝑽𝟎 = 1 V, 𝒅 = 20 µm). 

𝒎 𝑮𝒎 12 -1.02E-21 25 1.44E-12 38 5.82E-30 

0 5.92E-17 13 2.85E-07 26 -6.35E-27 39 -7.48E-19 

1 0.801729 14 2.30E-21 27 -1.04E-13 40 1.22E-30 

2 -6.37E-18 15 -2.14E-08 28 -8.94E-28 41 -1.17E-19 

3 -0.02298 16 -8.75E-23 29 -1.32E-14 42 -3.84E-32 

4 2.52E-17 17 -1.88E-09 30 2.38E-28 43 3.25E-20 

5 -0.00055 18 -5.78E-24 31 3.81E-15 44 5.51E-33 

6 -3.31E-18 19 5.92E-10 32 1.26E-28 45 -2.25E-21 

7 0.000196 20 2.32E-24 33 -2.69E-16 46 3.26E-33 

8 5.70E-19 21 -4.39E-11 34 1.12E-28 47 -3.89E-22 

9 -1.38E-05 22 8.33E-25 35 -3.83E-17 48 7.37E-34 

10 -1.08E-20 23 -4.78E-12 36 9.01E-29 49 1.16E-22 

11 -8.58E-07 24 3.83E-27 37 1.08E-17 50 2.59E-35 
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Figure S-2. Finite difference equations for electric potential on a planar electrode can be 
derived for several representative cases: (a) The electric potential 𝝋𝒊 is equal to the average 
of the electric potentials of the four neighboring points, (b) One of the neighboring points is on 
the boundary of the electrically-biased surface, (c) The electric potential 𝝋𝒊  is inside the 
electrically-biased surface, and (d) Some of the neighboring points are on the electrically 
insulated boundaries. 
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Derivation of Finite Difference Equations for Electric Potential on a 2D Plane 

Laplace equation for the electrical potential on a 2D plane can be shown as 

பమఝ

ப௫మ
+

பమఝ

ப௬మ
= 0.          (S-1) 

According to the second-order central difference scheme, the second order partial derivatives 

can be approximated as (Fig. S-2a) 
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௜
=
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ఋమ
,         (S-3) 

where 𝑖 is a grid index, 𝜑௜ is the electric potential at grid 𝑖, 𝛿 is the distance between the 

neighboring grids, and 𝑛 is the number of grid columns. The resulting Laplace equation can 

be given by  

𝜑௜ି௡ + 𝜑௜ିଵ − 4𝜑௜ + 𝜑௜ାଵ + 𝜑௜ା௡ = 0.      (S-4) 

If one of the neighboring grids has a fixed electric potential as shown in Fig. S-2b, where 

𝜑௜ି௡ = 𝜑଴ is a fixed electric potential, Eq. S-4 is shown as 

𝜑௜ିଵ − 4𝜑௜ + 𝜑௜ାଵ + 𝜑௜ା௡ = −𝜑଴.       (S-5) 

If grid i and the neighboring grids are biased to the same fixed electric potential, the electric 

potential at the grid 𝑖 is simply 𝜑௜ = 𝜑଴ (Fig. S-2c). When the grid 𝑖 is on an electrically 

insulated surface, 𝜑௜ି௡ = 𝜑௜ା௡ (Fig. S-2d) and Eq. S-4 is given by 

𝜑௜ିଵ − 4𝜑௜ + 𝜑௜ାଵ + 2𝜑௜ା௡ = 0.       (S-6) 

Finite difference equations for electric potentials at all grid points can be obtained in the same 

manner and solved using MATLAB. 
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Figure S-3. Real parts of the Clausius-Mossotti (CM) factors for E. coli and 1-µm-diameter 
polystyrene beads, suspended in 0.01× PBS buffer (199 µS/cm) [2–4]. 
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Figure S-4. MED process for 6 lines of IDEs. (a) case 1. (b) case 2. 
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3D Multiphysics Simulation using COMSOL 

3D simulation was conducted using a commercial software COMSOL Multiphysics® 

4.3. A 720 µm long (x-), 90 µm wide (y-), and 18 µm high (z-) microchannel with different 

electrode patterns on the bottom surface was designed. Flow and electrostatics modules were 

used, and the obtained flow fields and electric potential distributions were used in the particle 

tracing module. 

For steady incompressible laminar flow calculation, the governing equations were 𝛻 ∙

𝑢 = 0 and 𝜌൫𝑢 ∙ 𝛻൯𝑢 = 𝛻 ∙ ቂ−𝑝𝐼 + 𝜇 ቀ𝛻𝑢 + ൫𝛻𝑢൯
୘

ቁቃ, where 𝑢 is the flow velocity vector, 

𝑝  is static pressure,  𝜌  is the density, and 𝜇  is the dynamic viscosity of a fluid. Fully-

developed velocity inflow and zero pressure were set at the inlet and outlet, respectively, and 

the other walls were set to no-slip boundary conditions (𝑢 = 0). Newton-Raphson algorithms 

were employed to solve the nonlinear static finite element problems, with an iterative solver 

being the generalized minimum residual method for the linear systems having non-symmetric 

matrices in each step, and hence 𝑢 and 𝑝 fields were obtained along the volumetric domain. 

Laplace equation, 𝛻ଶ𝜑 = 0, was solved to find the electric field potentials, and as for 

the boundary conditions, external electrical sinusoidal signals were biased to the planar 

electrodes with 180o out of phases (red and blue electrodes from the MED process), and for the 

quasi-static electric field, the root-mean-squared (rms) electric potential is expressed as,  

𝑉௥௠௦ = ටଵ

்
∫ ቀ

௏೛೛

ଶ
sin 𝜔𝑡 −

௏೛೛

ଶ
sin(𝜔𝑡 + 𝜋)ቁ

ଶ௧బା்

௧బ
𝑑𝑡,     (S-7) 

where 𝑉௥௠௦ is the rms-valued electric potential, 𝑇 is the period of the sinusoidal signal, 𝑡଴ 

is an arbitrary time, 𝑉௣௣ is the peak-to-peak electric potential of the signal, 𝜔 is the angular 

frequency of the signal, and 𝑡  is the time. All boundaries except for the electrodes were 

applied by zero charge (Neumann boundary conditions), and 𝑉௥௠௦/2 and −𝑉௥௠௦/2 were 

given on the red and blue electrodes, respectively (Dirichlet boundary conditions) [5, 6]. 
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Conjugate gradient method was used as an iterative solver to solve the linear static finite 

element problems having symmetric matrices for the 𝜑 along the entire domain. Electric field 

vector fields were obtained by 𝐸 = −𝛻𝜑. 

Particle tracing was conducted for the bacteria using the Newtonian force model,  

𝑚௣
ௗమ௫೛

ௗ௧మ
= 𝐹ௗ௥௔௚ + 𝐹௚௥௔௩௜௧௬ + 𝐹௕௨௢௬௔௡௖௬ + 𝐹஽ா௉ = −3𝜋𝜇𝑑௣ ቀ

ௗ௫೛

ௗ௧
− 𝑢ቁ + 𝑚௣

ఘ೛ିఘ

ఘ೛
𝑔 +

గ

ସ
𝑑௣

ଷ𝜀௠𝑅𝑒(𝐾)𝛻ห𝐸ห
ଶ
,         (S-8) 

where 𝑚௣ is the particle mass, 𝑥௣ is the position vector of the particle, 𝑑௣ is the particle 

diameter, 𝜌௣ is the particle density, 𝑔 is the gravity vector, 𝜀௠ is the electrical permittivity 

of media, 𝑅𝑒(𝐾) is the real part of the CM factor. Here, the bacteria were assumed to be 1-

µm-diameter spheres, with 𝜌௣  of 1160 kg/m3 [7] and 𝑅𝑒(𝐾) of 0.93666 (Fig. S-3). The 

predetermined 𝑢 and 𝐸 were used for the particle tracing, and a transient implicit solver 

generalized alpha was used with automatically chosen time steps. A total of 352 (44×8) 

particles were equally distributed at the inlet, and their trajectories were analyzed (Fig. 7). 

To verify the solution convergence, mesh sizes were varied, and the velocity profile, 

ቚ∂ห𝐸ห
ଶ

∂zൗ ቚ, and final z-directional positions were checked for flow, electrostatics, and particles 

tracing, respectively. Also, the element order (4, 10, 20, 35 nodes per each tetrahedral element 

for 1st, 2nd, 3rd, and 4th order elements, respectively) was tested for flow and electrostatic 

simulations, and time step was controlled to acquire converged particle trajectories. The 

determined numerical conditions for the converged solutions were listed in Table S-2.  

 

Table S-2. Numerical conditions for the converged solutions. 
 

Laminar Flow Electrostatics Particle Tracing 

Tetrahedral Mesh 
Element Number 

104,812 1,332,327 4,738,566 

Element Order 2nd (velocity), 1st (pressure) 4th (electric potential)  
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Time Step - - 6.13e-7 to 1 s 

Solving Time 2 min 37 sec 20 min 28 sec 11 hr 39 min 50 sec 

RAM Usage 3.35 GB 39.46 GB 15.89 GB 

 

Table S-3. S values for various electrodes 

 

 

 

Electrode 
Pattern 

Factor S Fig. 2e Electrode Pattern Factor S Figs. 4-7 

 
9.6 ①  

 
83.1 IDEs (6-line; case 1) 

 
10.5 ② 

 
142.5 IDEs (6-line; case 2) 

 
14.8 ③ 

 
182.9 IDEs (12-line; case 1) 

 
15.6 ④ 

 
207.5 

MED-optimized 

Electrodes (from 6-line 

IDEs; case 2) 

 
16.5 ⑤ 

 
236.7 

MED-optimized 

Electrodes (from 6-line 

IDEs; case 1) 

 
19.2 ⑥ 

 
313.5 IDEs (12-line; case 2) 

 
19.2 ⑦ 

 
437.5 

MED Electrodes (from 

12-line IDEs; case 2) 

 
20.1 ⑧ 

 
491.5 

MED Electrodes (from 

12-line IDEs; case 1) 

 
24.0 ⑨    
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2D Simulation using COMSOL for Six IDEs 

We conducted 2D simulations on six IDEs having 20 µm widths and different gaps 

ranging from 1 to 15 µm in a 90 µm high microfluidic channel using Comsol. The flow rates 

changed from 40 to 40000 nl/min, and -1V and +1V were applied to the electrodes. The number 

of captured particles increased with the electrode gap for lower flow rates and decreased for 

higher flow rates. This is because the low electric field intensity in the larger gaps may be 

sufficient for particle capture because of low flow rates. Also, larger gap IDEs have larger 

working areas, which means that electric field is applied over large areas, and hence the 

particles under the electric field may have a higher probability to be captured on the electrodes.  

 

Figure S-5. The particle tracks for different electrode gaps and flow rates. 

 

Therefore, we also plotted the number of captured particles based on the number density 

(the number of captured particles/working areas), and the particle capture density decreased 

with the electrode gap for all flow rates, as shown below. Interestingly, the electrode with 3 

µm gap has higher values of S and S/working area, but had lower particle capture density than 
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the electrode with 4 µm gap for 40 nl/min (the lowest flow rate case) although the particle 

capture density increased with the increasing values of S and S/working area for other flow 

rates. Even for the lowest flow rate case, the general trend shows that the particle capture 

density increased with the increasing values of S and S/working area. 

 
Figure S-6. The number of captured particles (left) and the particle capture density (right) for 
different electrode gaps and flow rates, where the values of S and S/working area decreased 
with the increasing electrode gap. 
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