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1 Reference viscosities and mass densities
The reference viscosities were measured using a rolling ball viscometer (AMVn Viscometer,
Anton Paar, Switzerland) consisting of a capillary 1.6mm in diameter and a ball with a density of
7.65 g cm−3. The measurements were performed for di�erent tilt angles (50°, 60°, and 70°) and
four repeats per sample and angle.

For the determination of the reference mass densities, a density meter (DMA 4500, Anton
Paar, Switzerland) was used. A temperature of 20 ◦C was set for all measurements.

Table 1: Reference viscosities and mass densities of water and glycerol solutions. For low viscous
�uids (0mPa s–6.63mPa s) the calibration �uids are marked with an asterisk. For high viscous
�uids (13.16mPa s–219mPa s) the used reference liquids are marked with a circle. The viscosity
of 85%- and 90%-glycerol are theoretical values. The determination by the classical Anton Paar
viscometer was not possible due to high rolling time.

Sample /% V/V Density /kgm−3 Viscosity /mPa s ROM
0 998.21 0.9972 ∗
10 1031.81 1.4494
20 1050.57 1.8358
25 1065.72 2.2514
30 1079.18 2.6715 ∗ ◦
35 1094.54 3.4054
40 1106.52 4.1846
45 1117.88 5.2058
50 1132.53 6.6252 ∗
60 1163.66 13.1617 ◦
85 1220.85 109
90 1232.1 219 ◦

2 General model description

2.1 Derivation of the driven damped harmonic oscillatormodel in rela-
tion to the ROM

For calibration of the viscosity and liquid density platform, a reduced ordermodel (ROM) has been
applied. This model was tested for several resonators with di�erent geometries [1]. Geometrical,
material and measurement-platform dependent parameters are not explicitly incorporated but
taken into consideration by a calibration step.

The ROM considers a linear, mechanical oscillator with a lumped mass m0, a damping
coe�cient c0 and a spring constant k0 fully immersed in a liquid. This model is governed by the
following di�erential equation:

m0
d
dt
dx (t)
dt

+ c0
dx (t)
dt

+ k0x (t) = Fdrive (t) − Ffluid (t) (1)

1



Oliva et. al (2018)

where Fdrive is the time-dependent external driving force, Ffluid the force exerted by the �uid and
x (t) the time-dependent displacement function of the lumped mass. This equation describes a
driven damped harmonic oscillator (DDHO). The �uid force is described by the following term:

Ffluid (t) = cf
dx
dt

+ mf
d
dt
dx
dt

(2)

where cf is the damping coe�cient of the �uid andmf the co-moving �uid mass. The simpli�ed
expressions for the resonance frequency and for the quality factor are derived from eq. (1) and
listed below:

fexp ≈ 1

2�
√
m0k +m�k ∗ � +m∗

��k ∗
√
� �

, (3)

Qexp ≈

√
m0k +m�k ∗ � +m∗

��k ∗
√
� �

c0k + c�k ∗ � + c∗��k ∗
√
� �

(4)

By measuring the eigenfrequency and the quality factor of three known liquids we can determine
the required six coe�cients,m0k,m�k,m∗

�rℎok, c0k, c�k and c
∗
��k.

fexp and Qexp are the measured eigenfrequency and quality factor of the analyzed liquid.
In our case, this equation system has been implemented in Wolfram Mathematica, which �rst
calculates the resulting �uid properties and then shows the results in two separated 3D maps.
These maps give information about the validity of the calculated ROM coe�cients (graphs shown
below).
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b

a

Figure 1: Resulting calibration planes for the measured eigenfrequencies (a) and quality factors
(b) for corresponding mass densities and dynamic viscosities. The blue circles represent the three
calibration �uids, and the yellow ones are the measured actin solutions.

2.2 Limitation of the reduced order model
To establish a well-de�ned plane, it is essential to choose �uids which are well distributed; this
means that the viscosities and mass densities of the calibration liquids should have signi�cant
deviations from each other. Additionally, it is necessary to use always the same calibration �uids
otherwise a comparison of the results can lead to incorrect interpretation. A discrepancy in the
�uid properties between two di�erent measurement series calibrated with di�erent liquids has
primarily been observed in the resulting liquid density. Deviations in the chosen liquid viscosities
seem to a�ect less the distance between two calibration planes (see �gure below).
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a

b

Figure 2: Analysis of resulting discrepancy between di�erent calibration �uids (a) for correspond-
ing mass density and (b) viscosity. Blue circles represent the calibration liquids.

2.3 Calculation of ROM coe�cients
To determine the viscosities and mass densities from eigenfrequency and quality factor with the
reduced order model a calibration step is needed. This step is performed before every measure-
ment. For each sample the corresponding amplitude and phase curves were measured and by
�tting (Levenberg-Marquardt algorithm implemented in Igor Pro) a driven damped harmonic
oscillator model to the data, the eigenfrequencies and the quality factors were determined. These
parameters are �nally inserted into a linear least square equation to calculate the calibration
coe�cients (see ch. 2.1).
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Table 2: Measured eigenfrequencies and quality factors of water and glycerol solutions (�tted
value ± SD). The �uids marked with an asterisk were used to calculate the ROM coe�cients
(listed in table 3), and from the remaining liquids, viscosities and mass densities were calculated
by applying the reduced order model.

Sample fexp [kHz] Qexp Calibration ROM
0% 35.335 ± 1.24 116.25 ± 1.07 ∗
10% 34.872 ± 0.871 98.002 ± 0.624
20% 34.540 ± 1 89.014 ± 0.591
25% 34.223 ± 1 82.844 ± 0.532
30% 34.047 ± 1.27 78.266 ± 0.573 ∗
35% 33.799 ± 1.24 70.855 ± 0.478
40% 33.688 ± 1.39 68.457 ± 0.473
45% 33.492 ± 1.83 61.234 ± 0.431
50% 33.350 ± 1.81 56.813 ± 0.428 ∗

Table 3: ROM coe�cients calculated for the experiments shown in Fig. 5a.

m0k = −1.3085 × 10−12 s2

m�k = 2.1889 × 10−14m3 s2 kg−1

m∗
��k = −2.5389 × 10−13m2 s5∕2 kg−1

c0k = 4.0390 × 10−9 s
c�k = −3.4906 × 10−6ms2 kg−1

c∗��k = 3.8275 × 10−8m2 s3∕2 kg−1

Table 4: Measured eigenfrequencies and quality factors of high viscous �uids. The �uids marked
with a circle were used to determine the ROM coe�cients listed in table 5.

Sample fexp [kHz] Qexp Calibration ROM
30% 34.715 65.627 ◦
60% 33.459 46.986 ◦
85% 32.836 27.261
90% 32.593 24.904 ◦
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Table 5: ROM coe�cients calculated for the determination of the liquid properties of high viscous
�uids shown in Fig. 5b.

m0k = 1.8756 × 10−12 s2

m�k = 1.7869 × 10−14m3 s2 kg−1

m∗
��k = −6.1516 × 10−15m2 s5∕2 kg−1

c0k = 3.236 03 × 10−9 s
c�k = −1.8444 × 10−6ms2 kg−1

c∗��k = 3.6285 × 10−8m2 s3∕2 kg−1

Table 6: Measured eigenfrequencies and quality factors used to calculate the ROM coe�cients
presented in table 7.

Sample fexp [kHz] Qexp

0% 35.713 110.21
30% 34.291 72.50
50% 33.558 53.95

Table 7: ROM coe�cients calculated for the experiments presented in Fig. 6a.

m0k = −3.6653 × 10−12 s2

m�k = 2.3934 × 10−14m3 s2 kg−1

m∗
��k = −3.6649 × 10−13m2 s5∕2 kg−1

c0k = −3.7631 × 10−9 s
c�k = −7.6355 × 10−6ms2 kg−1

c∗��k = 5.1932 × 10−8m2 s3∕2 kg−1
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Table 8: Measured eigenfrequencies and quality factors of the calibration �uids used to determine
the ROM coe�cients presented in table 9.

Sample fexp [kHz] Qexp

0% 35.719 117.87
30% 34.373 78.619
50% 33.712 57.669

Table 9: Calculated ROM coe�cients for the experiment shown in Fig. 6b.

m0k = −2.296 83 × 10−12 s2

m�k = 2.253 15 × 10−14m3 s2 kg−1

m∗
��k = −3.413 66 × 10−13m2 s5∕2 kg−1

c0k = −1.035 91 × 10−10 s
c�k = −5.656 82 × 10−6ms2 kg−1

c∗��k = 3.3647 × 10−8m2 s3∕2 kg−1

3 Typical sweeper analysis of a G-actin polymerization
Fig. 3 shows a typical amplitude and phase curve of a G-actin polymerization. After a steady-state
is achieved PolyMix is added to the solution and a signi�cant frequency shift is visible. In addition,
over time the amplitude starts to decrease which coincides with a decreasing slope of the phase
curve. This is related to the formation of �lamentous actin.
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Figure 3: Amplitude and phase curves collected during the G-Actin polymerization.

4 G-actin polymerization measured with di�erent silicon-
nitride membranes

To prove the membrane independence of the G-actin polymerization, the same experiment
presented in the main article (ch. 3.3) has been performed with di�erent membranes.

As we can see from the graphs (Fig. 4) di�erent viscosity and mass density maxima can be
achieved. This is also pointed out from the di�erent measured eigenfrequencies.
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Figure 4: (a) Graphs show the measured eigenfrequencies and the calculated mass densities.
Each color stands for one experiment, and each marker represents one silicon-nitride membrane.
M1 andM2 stand for two di�erent used Si3N4-membrane having the same physical properties; (b)
Plots show the measured Q-factors and the corresponding calculated viscosities. Fluid properties
have been measured with the reduced order model.
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5 Typical data analysis work�ow

1. Lorentzian �t to the amplitude curve.

2. Extract peak frequency from lorentzian �t and 
determine an initial Q-factor.

3. Use damped harmonic oscillator (DHO) model 
with the extracted values to �t the measured phase 
curve.

4. Repeat these steps for all calibration �uids.
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Curve Fit Results
Fit Type: least squares fit
Function: SHO_P
Coefficient values ± one standard deviation

f0   =35335 ± 0.989
Q    =109.55 ± 0.853
Slope =0.00097916 ± 0.000437
Off  =-235.43 ± 15.5

5. Insert measured parameters into the reduced 
order model.

6. Calculate calibration coe�cients (presented in 
chapter 3).

7. Evaluate phase curve of the analysed �uid as 
shown from step 1 to step 3.

8. Insert extracted values into equation system 
(Chapter 3, equ. 1+2) and solve it for  η and ρ.

Figure 5: Work�ow of the data analysis part.

6 Calculationof thephononbanddiagramof silicon-nitride
membranes

To analyze the clamping loss induced by the coupling of the membrane and its support, a
phonon dispersion relation analysis of a commercially available Si3N4-membrane in COMSOL
Multiphysics® was performed. The model consists of two rectangulars with di�erent lengths
and widths. In our particular case these geometries were built with the same dimensions as the
membranes used in our experiments. The material properties were taken from the COMSOL
library, and the solid mechanics module, coupled with an eigenfrequency analysis, was used. As
periodic boundary condition a Floquet periodicity with corresponding k-vectors was considered.
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Figure 6: Results of the simulated phonon dispersion relation in COMSOL Multiphysics ®. (a)
Geometries of the used Si3N4-membranes. The blue square is the silicon frame and the central
gold part is the Si3N4-layer. Both components were considered to be the �rst Brillouin zone
(primitive unit cell in the reciprocal space). The Γ-point was set in the middle of the the Si3N4-
frame; (b) Simulated phonondispersion relation of the used Si3N4-membranes. For the simulation
the k-space was divided into three parts: Γ → X goes from 0 to 1 (yellow part), X → M from
1 to 2 (red part) andM → Γ from 2 to 3 (light blue part). The gray part shows the calculated
phononic bandgap.
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