
Automated Detection and Sorting of Microencapsulation via Machine Learning

Albert Chu, Du Nguyen, Sachin S. Talathi, Aaron C. Wilson, Congwang Ye, William L. Smith,
Alan D. Kaplan, Eric B. Duoss, Joshua K. Stolaroff, and Brian Giera

Supplementary Materials
Machine learning algorithm architecture
Our Convolutional Neural Network (CNN) 1 configuration follows a minimalist design in

comparison to other models we explored, as shown in Figure SM1. The model contains a total
of 6 weight layers (4 convolution and 2 fully-connected layers). Convolutional kernels are of size
3×3 with 16 output filters in the first two convolution blocks and 32 output filters in the third and
fourth convolution blocks. Layer inputs are normalized via batch normalization2 with a batch
size of 64. All layers with the exception of the output layer uses ReLU nonlinear activation1,3,
whereas the output layer uses softmax activation4 over four categories. Merge pooling layers
follow each convolution layer, which consist of adding the average-pooling and max-pooling
layers; pooling kernel sizes are 2×2 with stride of (2, 2). The fully-connected layers are flattened
with the penultimate layer implementing dropout5 with rate of 0.5 during training. Since our
input data layer receives only one channel images of size 32×32, we use the open-source python
package OpenCV6 to convert all camera images to grayscale and resizing them to the proper
dimensions.

We also explored VGG7 and Inception2, which are deeper layered networks than what we
describe above. On those networks, pre-training on ImageNet8 provided no advantages due to
domain mismatch9, since the source domain, i.e. ImageNet, is incongruent with our target
domain of microencapsulation images. In terms of performance, the complex models with larger
input sizes were outperformed by the simple model (139×139 vs. 32×32). Admittedly, this
comparison is based on a modest training set of 74,000 images and larger networks will tend to
overfit on smaller training sets. Nonetheless, the biggest factor in choosing our simple model is
the training time due to the difference in number of parameters and input size. Our simple
network yields 80k parameters, and 1.25M multiply-accumulate operations (MACs), compared
with 138M parameters and 15.5B MACs for VGG and 11M parameters and 1.5M MACs for
Inception.

Electronic Supplementary Material (ESI) for Lab on a Chip.
This journal is © The Royal Society of Chemistry 2019

Figure SM1. Machine learning model architecture schematic.

Sorting simulation sequences
The displays the sequence of events that contains uninterrupted non-dripping (0-10 and ~44-94
seconds) events, periods of moderate (~10-25 seconds) and high (~25-30 seconds) frequency
fluctuations, and uninterrupted dripping events elsewhere. Figure SM2 shows this sequence for
three example models with different F1 scores and overlays the false collection, false rejection,
and operator notification events. We identify with markers the algorithm-predicted class during
false collection of non-dripping events or false rejection of dripping events. Misclassifications
are evident in cases where markers do not coincide with the ground truth. We also highlight the
time(s) where the valve controller sends a text message to the operator, which occurs when the
image detections classifies 10 seconds of uninterrupted non-dripping events.

(a)

(b)

(c)

Figure SM2. Sorting simulations show the valving system’s effectiveness for several image
detection algorithms with varying prediction accuracy. Markers for false collection, false
rejection, and operator notification events (legend) appear at the CNN-predicted class for models
with F1-scores of 0.946 (a), 0.852 (b), and 0.220 (c). Per Figure 4 in main text, the fraction of
erroneous sorting events generally decreases with increasing F1-score and training set size.

References
1 A. Krizhevsky, I. Sutskever and G. E. Hinton, in Advances in Neural Information Processing

Systems 25, eds. F. Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger, Curran
Associates, Inc., 2012, pp. 1097–1105.

2 S. Ioffe and C. Szegedy, ArXiv150203167 Cs.
3 V. Nair and G. E. Hinton, 8.
4 C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics), Springer-Verlag New York, Inc., 2006.
5 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, 30.
6 G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library,

O’Reilly Media, Inc., 2008.
7 K. Simonyan and A. Zisserman, ArXiv14091556 Cs.
8 J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li and Li Fei-Fei, IEEE, 2009, pp. 248–255.
9 Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen and X. Xue, IEEE, 2017, pp. 1937–1945.

