Supplementary material

Molecular modelling studies of quinazolinone derivatives as MMP-

13 Inhibitors by QSAR, molecular docking and molecular dynamics

simulations techniques

Shanshan Huang, Kairui Feng, and Yujie Ren*

College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China

Correspondence

Yujie Ren, College of Chemical and Environmental Engineering, Shanghai Institute

of Technology, Shanghai, China.

Email: <u>clab@sit.edu.cn</u>

Outline of the Supplementary material

1. Figures

Fig. S1 Region1 and Region2 used for Topomer CoMFA are shown in blue and red, respectively.

Fig. S2 Topomer CoMFA contour maps based on compound 26. (A, B) Steric and electrostatic contour

maps in Region1. (C, D) Steric and electrostatic contours in Region2.

Fig. S3 Docking results of all designed compounds D1-8 in the MMP-13 protein.

Fig. S4 (A) Structural comparison between initial (red) and representative snapshots from MD simulation (blue) of compound 5. (B) The binding mode of 5-MMP-13 after MD simulation.

Fig. S5 The root-mean-square fluctuation (RMSF) of the compound 26 (black) and 5 (orange) in the MMP-13 complexes obtained from 50 ns MD simulation.

2. Tables

 Table S1. Molecular structures of all compounds with their actual and predicted pIC₅₀ values of CoMFA

 and CoMSIA

Table S2 Energy contribution of the key residues of 26-MMP-13 computed by GB method (Kcal Mol⁻¹)

Table S3 Energy contribution of the key residues of D3-MMP-13 computed by GB method (Kcal Mol⁻¹)

Table S4 Energy contribution of the key residues of D8-MMP-13 computed by GB method (Kcal Mol⁻¹)

 Table S5 Energy contribution of the key residues of 5-MMP-13 computed by GB method (Kcal

 Mol⁻¹)

Table S6. ADMET prediction of designed compounds

2

1. Figure captions

Fig. S1 Region1 and Region2 used for Topomer CoMFA are shown in blue and red, respectively.

Fig. S2 Topomer CoMFA contour maps based on compound 26. (A, B) Steric and electrostatic contour maps in Region1. (C, D) Steric and electrostatic contours in Region2.

Fig. S3 Docking results of all designed compounds D1-D8 in the MMP-13 protein

Fig. S4 Structural comparison between initial (red) and representative snapshots from MD simulation (blue) of compound 5.

Fig. S5 The root-mean-square fluctuation (RMSF) of the compound 26 (black) and 5 (orange) in the MMP-13 complexes obtained from 50 ns MD simulation.

2. Table captions

Table S1. Molecular structures of all compounds with their actual and predicted pIC₅₀ values of CoMFA and CoMSIA

Compound 1-30

					CoMFA		CoN	1SIA
NO.	R ₁	R ₂	R ₃	Exp.ª	Pred. ^b	Res. ^c	Pred. ^d	Res. ^c
1	-H	-H	-OCH ₃	7.921	7.791	0.130	7.586	0.335
2	-H	-F	$-OCH_3$	7.959	8.070	-0.111	8.123	-0.164
3	-H	-CH ₃	-OCH₃	7.585	7.532	0.053	7.568	0.017

4*	-H	-OCF ₃	-OCH ₃	7.569	7.396	0.173	7.877	-0.308
5	-H	-OCH ₂ Ph	-OCH ₃	6.959	6.862	0.097	6.970	-0.011
6	-H	$-SO_2CH_3$	-OCH ₃	7.638	7.642	-0.004	7.667	-0.029
7	-H	-Ph	-OCH ₃	8.009	8.004	0.005	8.081	-0.072
8	-H	-CN	-OCH ₃	8.201	8.223	-0.022	8.270	-0.069
9	-F	-H	-OCH ₃	8.301	8.111	0.190	8.086	0.215
10	-CH ₃	-H	-OCH ₃	7.538	7.835	-0.297	7.819	-0.281
11	-OCH ₃	-H	-OCH ₃	7.602	7.734	-0.132	7.640	-0.038
12	-CN	-H	-OCH ₃	8.066	8.175	-0.109	8.082	-0.016
13	-Ph	-H	-OCH ₃	8.658	8.524	0.134	8.550	0.108
14	-OPh	-H	-OCH ₃	9.276	9.296	-0.020	9.311	-0.035
15*	0 ^{Ph}	-H	-OCH ₃	9.161	8.692	0.469	8.905	0.256
16	0 [~] Ph	-H	-OCH ₃	9.284	9.251	0.033	9.276	0.008
17	0 ⁰ Ph	-H	-OCH ₃	8.796	8.786	0.010	8.741	0.055
18*	HN	-H	-OCH ₃	8.367	8.284	0.083	8.134	0.233
19	s Ph	-H	-OCH ₃	8.013	8.155	-0.142	8.061	-0.048
20	H ₂ C ^{Ph}	-H	-OCH ₃	8.538	8.555	-0.017	8.502	0.036
21	H ₂ C ^O Ph	-H	-OCH ₃	8.770	8.690	0.080	8.705	0.065
22*	H_2C^{-N} Ph	-H	-OCH ₃	7.796	8.656	-0.860	8.051	-0.255
23	0~~~	-H	-OCH ₃	9.004	8.955	0.049	9.010	-0.006
24	0~~N~	-H	-OCH ₃	7.469	7.502	-0.033	7.470	-0.001
25	0 F	-F	-OCH₃	9.824	9.757	0.067	9.872	-0.048

Compound 31-53

				CoMFA		CoN	ISIA
NO.	R ₁	R ₃	Exp. ^a	Pred. ^b	Res. ^c	Pred. ^d	Res. ^c
31	-CH ₃		10.131	10.204	-0.073	10.142	-0.011
32	$-CH_3$	HN N S	8.585	8.470	0.115	8.578	0.007
33	-CH ₃		10.194	10.087	0.107	10.160	0.034
34*	-CH₃		8.824	8.879	-0.055	8.266	0.558
35	-CH ₃		8.310	8.337	-0.027	8.334	-0.024
36	-CH₃		9.538	9.575	-0.037	9.470	0.068

37	-iPr	10.041	10.103	-0.062	10.018	0.023
38	-Ph	10.469	10.434	0.035	10.530	-0.061
39	2-SH-Ph	10.569	10.569	0.000	10.591	-0.022
40	3-SH-Ph	10.367	10.247	0.120	10.218	0.149
41	2-F-Ph	10.620	10.486	0.134	10.403	0.217
42	3-F-Ph	10.444	10.450	-0.006	10.459	-0.015
43	4-F-Ph	10.032	9.842	0.190	9.967	0.065
44*	2-Cl-Ph	10.268	10.691	-0.423	11.008	-0.740
45	3-Cl-Ph	10.244	10.240	0.004	10.374	-0.130
46	4-Cl-Ph	9.357	9.580	-0.223	9.425	-0.068
47	2-OCH₃-Ph	9.538	9.644	-0.106	9.648	-0.110
48	3-OCH₃-Ph	10.585	10.687	-0.102	10.698	-0.113
49*	4-OCH ₃ -Ph	10.000	9.887	0.113	9.957	0.043
50	2-F-Ph	10.208	10.255	-0.047	10.087	0.121

51	3-F-Ph	9.854	9.961	-0.107	9.895	-0.041
52	2-Cl-Ph	10.229	10.214	0.015	10.333	-0.104
53	3-Cl-Ph	10.108	10.119	-0.011	10.065	0.043

^a Experimental pIC_{50} .

^b Predicted pIC₅₀ by CoMFA model.

 $^{\rm c}$ Relative error of (Predicted pIC_{50} - Experimental pIC_{50}).

 $^{\rm d}$ Predicted pIC_{50} by CoMSIA model.

* The samples of the test set

Table S2	Energy	contribution	of the key	residues o	of 26-MMP-13	computed b	y GB	method	(Kcal
Mol⁻¹)									

No.	$\mathbf{S}_{\mathrm{VDW}}$	B_{VDW}	S _{ELE}	\mathbf{B}_{ELE}	S _{GB}	B _{GB}	T _{GBSUR}	T _{GBTOT}
Lys140	-0.0427	-0.0044	-0.0432	-0.0015	-0.0061	-0.0002	-1.0029	-0.0801
Asn215	-0.3137	-0.1222	-0.6304	-0.028	-0.0892	-0.004	-1.3567	-0.0915
Ala238	-0.2542	-0.6753	-0.0621	-0.3314	-0.0088	-0.0469	-0.011	-0.6413
Phe241	-0.6656	-0.5842	-0.1227	-0.3151	-0.0174	-0.0446	-0.0598	-0.2913
Tyr244	-3.1259	-0.6191	-0.3808	-0.1511	-0.0539	-0.0214	-0.3397	-0.2298
Thr245	-0.4257	0.1220	-0.107	-0.759	-0.0151	-0.1065	-0.0795	-0.9358
Tyr246	-1.6733	-0.5072	-0.2648	-0.0722	-0.0375	-0.0102	-0.1676	-0.2116
Thr247	-1.5744	-0.2513	-0.216	-0.3584	-0.0305	-0.0507	-0.7179	-0.574
Met253	-0.0758	-0.0143	-0.018	-0.0027	-0.0025	-0.0004	-0.0697	-0.0228

Table S3 Energy contribution of the key residues of D3-MMP-13 computed by GB method (Kcal Mol⁻¹)

No.	$\mathbf{S}_{\mathbf{VDW}}$	$B_{\rm VDW}$	S _{ELE}	B _{ELE}	S _{GB}	B _{GB}	T _{GBSUR}	T _{GBTOT}
Lys140	-0.0077	-0.0013	-0.003	-0.0005	-0.0004	-0.0001	-0.2331	-0.0376
Asn215	-0.4545	-0.2159	-0.284	-0.1031	-0.0402	-0.0146	-0.6535	-0.3231
Ala238	-0.1491	-0.5193	-0.0623	-0.1961	-0.0088	-0.0277	-0.01	-0.3838
Phe241	-0.6999	-0.5899	-0.1617	-0.1823	-0.0229	-0.0258	-0.0485	-0.3372
Tyr244	-2.5098	-0.7016	-0.5434	-0.1929	-0.0769	-0.0273	-0.859	-0.4211
Thr245	-0.6513	-0.2601	-0.2447	-0.5939	-0.0346	-0.084	-0.1497	-1.1897
Tyr246	-1.6547	-0.5387	-0.3214	-0.0876	-0.0455	-0.0124	-0.2558	-0.3034
Thr247	-1.5921	-0.3081	-0.3037	-0.3602	-0.0429	-0.0509	-0.7909	-0.5645
Met253	-0.0093	-0.0172	-0.0019	-0.0041	-0.0003	-0.0006	-0.0076	-0.0335

No.	$\mathbf{S}_{\mathrm{VDW}}$	$\mathbf{B}_{\mathrm{VDW}}$	\mathbf{S}_{ELE}	$\mathbf{B}_{\mathrm{ELE}}$	S_{GB}	B _{GB}	T _{GBSUR}	T _{GBTOT}
Lys140	-0.0527	-0.0039	-0.0288	-0.0011	-0.0041	-0.0002	-0.5245	-0.1031
Asn215	-0.7365	-0.2011	0.3604	0.0676	-0.051	-0.0096	-0.782	-0.1782
Ala238	-0.2250	-0.5940	-0.0574	-0.3673	-0.0081	-0.0519	-0.0157	-0.675
Phe241	-0.6365	-0.7080	-0.0927	-0.1632	-0.0131	-0.0231	-0.0391	-0.3509
Tyr244	-3.0677	-0.6441	-0.676	-0.1802	-0.0956	-0.0255	-0.8052	-0.2374
Thr245	-0.5217	0.1805	-0.1042	-0.6227	-0.0147	-0.0881	-0.0966	-0.6479
Tyr246	-1.8250	-0.4339	-0.465	-0.1176	-0.0658	-0.0166	-0.3026	-0.2354
Thr247	-1.3174	-0.3354	-0.5978	-0.3488	-0.0845	-0.0493	-1.5355	-0.595
Met253	-0.0177	-0.0094	-0.0066	-0.0039	-0.0009	-0.0006	-0.0355	-0.019

Table S4 Energy contribution of the key residues of D8-MMP-13 computed by GB method (Kcal Mol⁻¹)

Table S5 Energy contribution of the key residues of 5-MMP-13 computed by GB method (Kcal Mol⁻¹)

No.	$\mathbf{S}_{\mathrm{VDW}}$	B_{VDW}	S _{ELE}	\mathbf{B}_{ELE}	\mathbf{S}_{GB}	\mathbf{B}_{GB}	T _{GBSUR}	T _{GBTOT}
Lys140	-0.0017	-0.0009	-0.0007	-0.0003	-0.0001	-0.0001	-0.1123	-0.0368
Asn215	-0.1639	-0.0954	-0.0631	-0.0631	-0.0089	-0.0089	-0.0877	-0.1778
Ala238	-0.0117	-0.0351	-0.0026	-0.0098	-0.0004	-0.0014	-0.0073	-0.0587
Phe241	-0.1327	-0.4949	-0.0255	-0.1107	-0.0036	-0.0157	-0.0149	-0.2788
Tyr244	-0.7895	-0.4072	-0.3623	-0.148	-0.0512	-0.0209	-0.2851	-0.1917
Thr245	-0.2506	-0.6661	-0.1071	-0.3508	-0.0151	-0.0496	-0.1006	-1.3028
Tyr246	-0.4204	-0.3712	-0.2027	-0.1697	-0.0287	-0.024	-0.0709	-0.2864
Thr247	-0.2425	-0.2108	-0.4007	-0.1049	-0.0567	-0.0148	-1.3574	-0.4271
Met253	-0.2636	-0.3046	-0.2218	-0.1287	-0.0314	-0.0182	-0.1039	-0.2953

S represents the contribution of the side chain;

B represents the contribution of the main chain;

T represents the total contribution;

ELE is the vacuum electrostatic interaction;

VDW is the vacuum van der Waals interaction;

GB is the polar solvation energy calculated by GB method;

GBSUR is a non polar solvation energy;

 $S_{\ensuremath{\text{VDW}}}$ is a residue side chain vacuum van der Waals interaction

Table S6 ADMET	prediction	of designed	compounds
----------------	------------	-------------	-----------

		ADMET	ADMET		ADMET		ADMET	ADMET	ADMET	ADMET	
No.		Solubility	BBB		CYP2D6	Honatotovicity	Hepatotoxicity	Absorption	PPB		
	Solubility	Level	Level	CIPZDO	Probability	перагогохісіту	Probability	Level	Level	Alugrao	PSA-2D
21k-Na	-4.44	2	4	0	0.346	1	0.92	1	0	3.41	115.636
D1-Na	-4.755	2	4	0	0.306	1	0.913	1	0	3.616	115.636
D2-Na	-4.347	2	4	0	0.306	1	0.913	2	0	3.168	136.451
D3-Na	-5.079	2	4	0	0.297	1	0.913	1	0	3.821	115.636
D4-Na	-5.089	2	4	0	0.306	1	0.966	1	0	3.821	115.636
D5-Na	-3.979	3	4	0	0.326	1	0.907	1	0	2.688	126.897
D6-Na	-4.451	2	4	0	0.306	1	0.913	2	0	2.985	147.712
D7-Na	-4.637	2	4	0	0.306	1	0.913	1	0	3.275	126.897
D8-Na	-5.471	2	4	0	0.386	1	0.887	2	1	4.271	124.566