Supplementary Material (ESI)

Design and synthesis of DNA-intercalative naphthalimidebenzothiazole/cinnamide derivatives: Cytotoxicity evaluation and topoisomerase II α inhibition

N. Sankara Rao, ${ }^{\text {a,b }}$ Narayana Nagesh,*c V. Lakshma Nayak, ${ }^{\text {a }}$ Satish Sunkari, ${ }^{\text {a,b }}$ Ramya Tokala, ${ }^{\text {d }}$ Gaddam Kiranmai, ${ }^{\text {c }}$ Phanindranath Regur, ${ }^{\text {c }}$ Nagula Shankaraiah, ${ }^{* d}$ and Ahmed Kamal, *a,b,e
${ }^{a}$ Medicinal Chemistry and Pharmacology, ${ }^{b}$ Academy of Scientific and Innovative Research. (AcSIR), CSIR-
Indian Institute of Chemical Technology, Hyderabad 500 007, India.
${ }^{\text {c CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India. }}$
${ }^{d}$ Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
${ }^{e}$ School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
Corresponding authors: Dr Ahmed Kamal, E-mail.: ahmedkamal@iict.res.in; and Dr. Narayana Nagesh, E-mail.: nagesh@ccmb.res.in; Dr Nagula Shankaraiah, E-mail.: shankar@niperhyd.ac.in

Table of contents

1. Experimental Section (Chemistry \& Biology) 2-14
2. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of products 15-34
3. Table 1. Cytotoxic activity 35-36

Experimental section

Chemistry

All the chemicals and reagents used in this study were obtained from Aldrich (SigmaAldrich, St. Louis, MO, USA), Lancaster (Alfa Aesar, Johnson Matthey Company, Ward Hill, MA, USA), or Spectrochem Pvt. Ltd (Mumbai, India) and were used without further purification. The reactions were monitored by TLC performed on silica gel glass plates containing 60 GF-254, and visualized was done by using a UV light or iodine indicator. Column chromatography was performed using Merck 60-120 mesh silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker UXNMR/XWIN-NMR (300 MHz) or Inova Varian-VXRunity (400, 500 MHz) instruments. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker UXNMR/XWIN-NMR (75 MHz) instrument. Chemical shifts (δ) were reported in ppm downfield from an internal standard TMS and coupling constants are expressed in Hz. Signal multiplicities are represented by s (singlet), d (doublet), t (triplet), quartet (q) ds (double singlet), dd (double doublet), m (multiplet) and br s (broad singlet). ESI spectra were recorded on a Micro mass Quattro LC using ESI+ software with a capillary voltage of 3.98 kV and an ESI mode positive ion trap detector. High-resolution mass spectra (HRMS) were recorded on a QSTAR XL hybrid MS-MS mass spectrometer. Melting points were determined with an electrothermal melting point apparatus, and are uncorrected.

2-(2-(Piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (8)

To 1,8,-naphthalic anhydride ($\mathbf{6}$)(198 mg, 1 mmol$), 2$-(piperazin-1-yl)ethanamine (7) (137 $\mathrm{mg}, 1.1 \mathrm{mmol})$ in ethanol $(10 \mathrm{ml})$ was added and stirred for 8 h at $60^{\circ} \mathrm{C}$ under reflux condition. After completion of the reaction as checked by TLC, the solvent was evaporated, and extracted with ethyl acetate. The combined organic fractions were washed with water followed by brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography using pure ethyl acetate to obtain the pure product $\mathbf{8}$ as white solid. ($250 \mathrm{mg}, 81 \%$ yield); mp: $106{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 4 \mathrm{H}), 2.67(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{bs}, 4 \mathrm{H}) ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 310[\mathrm{M}+\mathrm{H}]^{+}$. Ethyl 2-(4-(2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl)piperazin-1-yl)acetate (9)

To a solution of compound $\mathbf{8}(309 \mathrm{mg}, 1 \mathrm{mmol})$ in dry DMF (15 ml) was added, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(276 \mathrm{mg}, 2 \mathrm{mmol})$, α-bromoethylacetate ($250 \mathrm{mg}, 1.5 \mathrm{mmol}$) and the mixture was stirred at room temperature for 24 h . The reaction was monitored by TLC using ethyl acetate-hexane (8:2). After completion of the reaction as indicated by the TLC, $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration,
diluted with water and extracted with dichloromethane ($2 \times 20 \mathrm{ml}$). The combined organic phases were washed with water followed by brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum. The residue, thus obtained was purified by column chromatography using pure ethyl acetate and hexane to afford pure compound 9 as yellow solid. ($335 \mathrm{mg}, 85 \%$ yield); $\mathrm{mp}: 144{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.73-2.63(\mathrm{~m}, 6 \mathrm{H}), 2.60$ $-2.53(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$; MS (ESI): m/z $396[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-(2-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl)piperazin-1-yl)aceticacid (10)

To a solution of compound 9 ($395 \mathrm{mg}, 1 \mathrm{mmol}$) in THF (15 ml) and water (2 ml), LiOH. $\mathrm{H}_{2} \mathrm{O}(84 \mathrm{mg}, 2 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 12 h . The reaction was monitored by TLC using ethyl acetate. After completion of the reaction as indicated by the TLC, the solvent was removed under vacuum and neutralized with dilute HCl up to pH 7 . After neutralization the reaction mixture was extracted with dichloromethane $(2 \times 20 \mathrm{ml})$. The combined organic phases were washed with water followed by brine solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to obtain compound 10. This crude compound was purified by recrystallization by using ethyl acetate as solvent to obtain the pure product $\mathbf{1 0}$ as white solid. (293 mg, 80\% yield); mp: $187{ }^{\circ} \mathrm{C} ; \mathrm{m} / \mathrm{z} 368[\mathrm{M}+\mathrm{H}]^{+}$
N-(Benzo[d]thiazol-2-yl)-2-(4-(2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl)piperazin-1-yl)acetamide (3a)

To a solution of 2-aminobenzothiazole ($150 \mathrm{mg}, 1 \mathrm{mmol}$) in dichloromethane (20 ml) was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC hydrochloride) ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 1-hydroxy-1,2,3-benzotriazole (HOBt) $(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$. Then compound $10(1 \mathrm{mmol})$ was added and the reaction mixture was stirred at room temperature for 14 h and the reaction was monitored by TLC. After completion of reaction, water was added to reaction mixture and extracted with dichloromethane $(2 \times 30 \mathrm{ml})$.The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to afford the crude product. This was further purified by column chromatography using pure ethyl acetate as solvent system to obtain the pure product 3a as yellow solid; (167 mg , yield 82%); mp: $221^{\circ} \mathrm{C} ;{ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.37(\mathrm{bs}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 2 \mathrm{H}), 2.99-2.70(\mathrm{~m}, 6 \mathrm{H}), 2.65(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.24,164.14,157.06,148.41,133.91,132.17,131.53,131.17,128.12,127.52$,
$126.89,126.20,123.94,122.56,121.37,120.97,61.01,55.48,53.66,53.04,37.33 ; \operatorname{IR}(\mathrm{KBr})$ ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 3328, 2925 2821, 1694, 1655, 1621, 1584, 1531, 1448, 1342; MS (ESI): m/z 500 $[\mathrm{M}+\mathrm{H}]^{+}$.
2-(4-(2-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl)piperazin-1-yl)-N-(6-methoxybenzo[d]thiazol-2-yl)acetamide (3b)

This compound was prepared according to the method described for compound 3a by employing compound $\mathbf{1 0}$ ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), HOBt ($13.5 \mathrm{mg}, 0.1$ mmol)and 2-amino-6-methoxybenzothiazole ($180 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{3 b}$ as yellow solid; (184 mg , yield 85%); mp: $215^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.28(\mathrm{bs}, 1 \mathrm{H}), 8.59$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.23$ (s, 2H), $2.99-2.71(\mathrm{~m}, 6 \mathrm{H}), 2.66(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.99,164.14,156.82$, $155.08,142.63,133.91,133.43,131.56,131.18,128.15,126.90,122.60,121.55,115.19,104.25$, $61.00,55.78,55.50,53.63,53.06,37.33$; IR (KBr) $\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 3313,2929,2819,1699,1656$, 1618, 1576, 1513, 1438, 1375; MS (ESI): m/z $530[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 530.18565$, found 530.18478 .
2-(4-(2-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl)piperazin-1-yl)-N-(6-ethoxybenzo[d]thiazol-2-yl) acetamide (3c)

This compound was prepared according to the method described for compound $\mathbf{3 a}$ by employing compound 10 ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), HOBt ($13.5 \mathrm{mg}, 0.1$ mmol) and 2-amino-6-ethoxybenzothiazole ($194 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{3 c}$ as yellow solid.(191mg, yield 86\%); mp: $173^{\circ} \mathrm{C}$; 1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 10.31(\mathrm{bs}, 1 \mathrm{H}), 8.58$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{q}, J=13.9$, $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}), 2.79-2.71(\mathrm{~m}, 6 \mathrm{H}), 2.65(\mathrm{bs}, 4 \mathrm{H}), 1.45(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.97,164.09,156.08,155.00,142.43,133.88,133.31,131.47,131.13$, $128.06,126.85,122.49,121.46,115.58,104.88,64.00,60.94,55.44,53.55,53.00,37.24,14.79$; IR (KBr) $\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 3304,2944,2818,1694,1656,1623,1591,1565,1463,1387$; MS (ESI): $\mathrm{m} / \mathrm{z} 544[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-(2-(1,3-Dioxo-1H-benzo[de] isoquinolin-2(3H)-yl)ethyl)piperazin-1-yl)-N-(6-methylbenzo[d]thiazol-2-yl)acetamide (3d)

This compound was prepared according to the method described for compound 3a by employing compound 10 ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{HOBt}(13.5 \mathrm{mg}, 0.1$ mmol) and 2-amino-6-methylbenzothiazole ($164 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{3 f}$ as yellow solid. (170 mg , yield 81%); mp: $194{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.34$ (bs, 1H), 8.59 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 8.19 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (t, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.66-7.57$ (m, 2H), $7.23-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 6 \mathrm{H}), 2.70(\mathrm{bs}, 4 \mathrm{H}), 2.50(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.10,164.13,156.28,146.32,133.91,132.29,131.53$, 131.17, 128.11, 127.66, 126.89, 122.55, 121.15, 120.50, 61.01, 55.48, 53.59, 53.04, 37.29, 21.42; IR (KBr) $\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 3327,2923,2818,1696,1659,1645,1591,1537,1460,1384 ; \mathrm{MS}(\mathrm{ESI}):$ $\mathrm{m} / \mathrm{z} 514[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 514.19074$, found 514.18998.

N-(5,6-Dimethylbenzo[d]thiazol-2-yl)-2-(4-(2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl)piperazin-1-yl)acetamide (3e)

This compound was prepared according to the method described for compound 3a by employing compound 10 ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), HOBt ($13.5 \mathrm{mg}, 0.1$ mmol) and 2-amino-5,6-dimethylbenzothiazole ($178 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{3 g}$ as yellow solid. (176 mg , yield 82%); mp: $201{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.37$ (bs, 1 H), $8.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}$, $1 \mathrm{H}), 4.33(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 6 \mathrm{H}), 2.65(\mathrm{bs}, 4 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.37$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.03,164.12,156.28,146.91,135.30,133.90,133.24$, $131.51,131.16,129.51,128.10,126.88,122.54,121.33,121.30,61.03,55.48,53.59,53.03,37.29$, 20.21, 20.01; IR (KBr) ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 3331, 2945, 2820, 1699, 1656, 1625, 1591, 1533, 1464, 1380; MS (ESI): m/z $528[\mathrm{M}+\mathrm{H}]^{+}$.

N-(Benzo[d]thiazol-6-yl)-2-(4-(2-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl)piperazin-1-yl)acetamide (4a)

This compound was prepared according to the method described for compound 3a by employing compound 10 ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), HOBt ($13.5 \mathrm{mg}, 0.1$ mmol) and 6 -aminobenzothiazole ($150 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product 4 a as yellow solid.(165mg, yield 81%); mp: $103^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 9.41(\mathrm{bs}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H})$, $8.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 8.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=8.1 \mathrm{~Hz}$, 2H), $7.42-7.37$ (m, 1H), 4.38 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.16 ($\mathrm{s}, 2 \mathrm{H}$), $2.82-2.71$ (m, 6H), 2.67 (bs, 4H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.54,164.18,153.22,149.86,135.37,134.80,133.98,131.58$,
131.21, 128.16, 126.93, 123.55, 122.58, 118.62, 111.93, 61.80, 55.53, 53.46, 53.40, 37.36; IR $(\mathrm{KBr})\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 3286,2935,2817,1698,1659,1625,1589,1566,1474,1380 ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ $500[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 500.1751$, found 500.1777 .

2-(4-(2-(1,3-Dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)ethyl)piperazin-1-yl)-N-(2-methylbenzo[d]thiazol-6-yl)acetamide (4b)

This compound was prepared according to the method described for compound 3a by employing compound 10 ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), HOBt ($13.5 \mathrm{mg}, 0.1$ mmol) and 6 -amino-2-methylbenzothiazole ($164 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{4 b}$ as yellow solid.(158mg, yield 76\%); mp: $98^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.25(\mathrm{bs}, 1 \mathrm{H}), 8.59(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=4.3$ Hz, 2H), 4.34 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.12 ($\mathrm{s}, 2 \mathrm{H}$), 2.83 (s, 3H), 2.79 - 2.68 (m, 6H), 2.65 (bs, 4H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.36,168.20,164.15,153.86,136.06,133.94,131.53,131.18$, $130.95,128.11,126.89,122.52,121.44,117.33,112.86,61.73,55.50,53.33,37.27,20.13 ;$ IR $(\mathrm{KBr})\left(\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}\right): 3302,2934,2818,1697,1658,1625,1589,1568,1463,1379 ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ $514[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 514.19074$, found 514.19003.
(E)-2-(2-(4-Cinnamoylpiperazin-1-yl) ethyl)-1H-benzo [de]isoquinoline-1, 3(2H)-Dione (5a)

To a solution of compound 8 (1 mmol) in dichloromethane (20 ml) was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDCI) ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$) and 1-hydroxy-1,2,3benzotriazole (HOBt) ($13.5 \mathrm{mg}, 0.1 \mathrm{mmol}$). Then cinnamic acid ($148 \mathrm{mg}, 1 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature for 14 h and the reaction was monitored by TLC. After completion of reaction, water was added to reaction mixture and extracted with dichloromethane $(2 \times 30 \mathrm{ml})$.The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under vacuum to afford the crude product. This was further purified by column chromatography using pure ethyl acetate as solvent system to obtain the pure product $\mathbf{5 a}$ as yellow solid. $(179 \mathrm{mg}$, yield 84%); mp: $143^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $8.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.85$ (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.63(\mathrm{~m}, 4 \mathrm{H}), 2.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73$ (bs, 4 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.38,164.15,142.83,135.07,133.95,131.44,131.16$, $129.55,128.69,127.67,126.84,122.34,118.18,116.78,55.38,53.20,52.82,45.36,41.71,36.82$; IR (KBr) ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$):1699, 1654, 1613, 1590, 1436, 1381, 1346, 1333; MS (ESI): m/z 440 [M+H] ${ }^{+}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+440.19687$, found 440.19427 .
(E)-2-(2-(4-(3-(3-Methoxyphenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5b)

This compound was prepared according to the method described for compound $\mathbf{5 a}$ by employing compound $\mathbf{8}$ ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3-methoxy cinnamic acid ($178 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{5 b}$ as yellow solid. (180 mg , yield 79%); mp: $120^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=10.3,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 4 \mathrm{H}), 2.83(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.24,164.07,159.65,142.61,136.43,133.91,131.38,131.09,129.64$, $127.95,126.79,122.30,120.19,117.12,115.12,112.81,55.34,55.17,53.19,52.80,45.38,41.73$, 36.84; IR (KBr) ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$):1698, 1659, 1603, 1590, 1512, 1488, 1437, 1373, 1367; MS (ESI): $\mathrm{m} / \mathrm{z} 470[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 470.20743$, found 470.20496. (E)-2-(2-(4-(3-(4-Ethoxyphenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5c)

This compound was prepared according to the method described for compound $\mathbf{5 a}$ by employing compound $\mathbf{8}(367 \mathrm{mg}, 1 \mathrm{mmol})$, EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4-ethoxy cinnamic acid ($192 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product 5 c as yellow solid. (190mg, yield 81%); mp: $164^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.87$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.73 (bs, 4H), $2.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{bs}, 4 \mathrm{H}), 1.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.74,164.17,160.20,142.62,133.96,131.51,131.18,129.27,128.09,127.71,126.87$, $122.46,114.64,114.19,63.50,55.46,53.30,52.95,45.44,41.81,36.97,14.70$; IR (KBr) ($\mathrm{v}_{\text {max }} / \mathrm{cm}^{-}$ ${ }^{1}$): $1699,1656,1605,1591,1515,1493,1425,1363,1345$; MS (ESI): m/z $484[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]{ }^{+} 484.22308$, found 484.22032 .
(E)-2-(2-(4-(3-(3-(Trifluoromethyl)phenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5d)

This compound was prepared according to the method described for compound 5a by employing compound $\mathbf{8}(367 \mathrm{mg}, 1 \mathrm{mmol})$, $\mathrm{EDCI}(210 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3-trifluoromethylcinnamic acid ($216 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product 5 e as yellow
solid. (184 mg, 75%); mp: $189^{\circ} \mathrm{C}$ ' $^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.60(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{bs}, 4 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.78,164.19,140.91,136.05,134.00,131.55,131.21,131.12$, 129.33, 128.12, 126.93, 125.97, 125.92, 123.99, 123.93, 123.88, 123.84, (q, $J=4.4,8.7 \mathrm{~Hz}$), $122.51,119.06,55.53,53.44,52.98,45.88,42.24,37.26$; IR (KBr) $\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 1694,1683,1625$, 1608, 1591, 1456, 1390, 1376, 1366, 1347; MS (ESI): m/z $508[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 508.18425$, found 508.18288.
(E)-2-(2-(4-(3-(2,4-Dimethoxyphenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5e)

This compound was prepared according to the method described for compound 5a by employing compound $\mathbf{8}$ ($367 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{EDCI}(210 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 2,4-dimethoxycinnamic acid ($208 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{5 f}$ as yellow solid. (206mg, yield 85\%); mp: $199^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61$ ($\mathrm{d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.22 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52-$ $6.41(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 4 \mathrm{H}), 2.78(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.67 (bs, 4H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.38,164.13,161.91,159.54,138.29$, 133.92, 131.51, 131.14, 130.53, 128.08, 126.86, 122.49, 117.39, 115.36, 104.92, 98.41, 55.50, $55.41,55.35,53.32,53.13,37.13$; IR (KBr) $\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 1697,1656,1607,1591,1539,1455,1437$, 1389, 1376; MS (ESI): m/z $500[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 500.21800$, found 500.21515.
(E)-2-(2-(4-(3-(4-(Dimethylamino)phenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5f)

This compound was prepared according to the method described for compound 5a by employing compound $\mathbf{8}(367 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{EDCI}(210 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 4-dimethylaminocinnamic acid ($191 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product 5 g as yellow solid. (196mg, yield 84%); mp: $182^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $8.21(\mathrm{~d}, J=8.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 3 \mathrm{H}), 4.37(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.60(\mathrm{~m}, 4 \mathrm{H}), 2.99(\mathrm{~s}, 6 \mathrm{H}), 2.76(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.64 (bs, 4H); ${ }^{13} \mathrm{C}$ NMR (125 MHz ,) $\delta 166.15,164.12,151.23,143.19,133.91$, $131.52,131.14,129.19,128.10,126.87,123.15,122.53,111.80,111.50,55.52,53.24,45.65$,
42.01, 40.12, 37.24, 29.61; IR (KBr) ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 1689, 1655, 1600, 1584, 1517, 1467, 1415, 1373, 1335; MS (ESI): m/z $483[\mathrm{M}+\mathrm{H}]{ }^{+}$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 483.23907$, found 483.23609.
(E)-2-(2-(4-(3-(Benzo[d][1,3]dioxol-5-yl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5g)

This compound was prepared according to the method described for compound 5a by employing compound $\mathbf{8}$ ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3,4-methylanedioxycinnamic acid ($192 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{5 h}$ as yellow solid.(202mg, yield 86%); mp: $151^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $8.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.95$ (m, 2H), 6.79 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-$ $3.60(\mathrm{~m}, 4 \mathrm{H}), 2.81(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl3)} \delta 165.47,164.14$, $148.90,148.09,142.56,133.94,131.46,131.15,129.53,128.04,126.85,123.71,122.42,114.75$, $108.39,106.24,101.34,55.41,53.25,52.88,45.44,41.83,36.94 ;$ IR (KBr) $\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 1699,1654$, 1604, 1598, 1521, 1451, 1433, 1391, 1366; MS (ESI): m/z 484 [M+H] ${ }^{+}$; HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+484.18670$, found 484.18378.
(E)-2-(2-(4-(3-(3-Hydroxy-4-methoxyphenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5h)

This compound was prepared according to the method described for compound 5aby employing compound $\mathbf{8}(367 \mathrm{mg}, 1 \mathrm{mmol})$, $\mathrm{EDCI}(210 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3-hydroxy-4-methoxycinnamic acid ($194 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{5 i}$ as yellow solid. (181mg, yield 77%); mp: $112^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 8.22 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.60(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz,) $\delta 165.62,164.19,148.03,145.80,142.51,133.94,131.56,131.19,128.85,128.14$, $126.90,122.57,121.35,115.05,112.63,110.49,55.91,55.54,53.41,53.04,45.72,42.11,37.26$; IR (KBr) $\left(\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right): 1697,1658,1602,1590,1511,1437,1384,1345 ; \mathrm{MS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z} 486[\mathrm{M}+\mathrm{H}]$ ${ }^{+} ;$HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 486.20235$, found 486.19960 . (E)-2-(2-(4-(3-(2,4-Difluorophenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5i)

This compound was prepared according to the method described for compound $\mathbf{5 a}$ by employing compound $\mathbf{8}$ ($367 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{EDCI}(210 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 2,4-difluorocinnamic acid ($184 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{5 j}$ as yellow solid. (196mg, yield 85%); mp: $214^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $8.23(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=15.0,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.58(\mathrm{~m}, 4 \mathrm{H}), 2.77$ ($\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.65(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.13,164.15,134.58,133.93$, $131.57,131.16,130.62,128.14,126.90,122.57,119.87,111.92,111.60,104.85,104.51,104.17$, $55.53,53.38,53.04,45.85,42.23,37.31$; IR (KBr) $\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 1699,1655,1609,1526,1471,1425$, 1388, 1344, 1338; MS (ESI): m/z $476[\mathrm{M}+\mathrm{H}]{ }^{+}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ +476.17802, found 476.17503.
(E)-2-(2-(4-(3-(2,5-Difluorophenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione ($5 \mathbf{j}$)

This compound was prepared according to the method described for compound 5a by employing compound $\mathbf{8}$ ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 2,5-difluorocinnamic acid ($184 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{5 k}$ as yellow solid.(184mg, yield 80%); mp: $165^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.22 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 1 \mathrm{H})$, $7.09-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.57(\mathrm{~m}, 4 \mathrm{H}), 2.75$ ($\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.65(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.76,164.11,134.23,133.92$, $131.49,131.14,126.87,122.47,121.30,121.20,117.38,117.19,117.05,116.87,115.19,114.86$, $55.46,53.36,52.93,45.84,42.20,37.24$; IR (KBr) $\left(\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 1699,1654,1603,1517,1459$, 1417, 1387, 1346, 1335; MS (ESI): m/z $476[\mathrm{M}+\mathrm{H}]{ }^{+}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 476.17802$, found 476.17639 .
(E)-2-(2-(4-(3-(3,4-Difluorophenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione ($\mathbf{5 k}$)

This compound was prepared according to the method described for compound 5a by employing compound $\mathbf{8}(367 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{EDCI}(210 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3,4-difluorocinnamic acid ($184 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $5 \mathbf{1}$ as yellow solid.(182mg, yield 79\%); mp: $179^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{~d}, J=7 . \mathrm{Hz}, 2 \mathrm{H}$), 8.20 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.25$

- 7.12 (m, 2H), 6.75 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.65 (bs, 4H); ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta 164.75,164.16,140.31,133.95,132.52$, $131.57,131.18,128.14,126.92,124.38,122.57,118.26,117.68,117.54,115.90,115.76,55.51$, 53.39, 52.98, 45.87, 42.24, 37.30; IR (KBr) ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 1699, 1655, 1605, 1527, 1465, 1414, 1371, 1344, 1327; MS (ESI): m/z $476[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]+476.17802$, found 476.17538 .
(E)-2-(2-(4-(3-(3,5-Difluorophenyl)acryloyl)piperazin-1-yl)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (5l)

This compound was prepared according to the method described for compound 5a by employing compound 8 ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3,5 -difluorocinnamic acid ($184 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{5 m}$ as yellow solid. (191mg, 83%); mp: $206^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.22(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.77(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.71-3.58(\mathrm{~m}, 4 \mathrm{H}), 2.77(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 2 H), $2.64(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.83,164.66(\mathrm{~d}, J=13.17 \mathrm{~Hz}$), 164.46, 164.16, $161.54,161.36(\mathrm{~d}, J=13.17 \mathrm{~Hz}), 140.08,133.97,131.18,126.91,122.51,119.83,110.45,110.11$, 104.94, 104.61, 55.48, 53.38, 52.92, 45.89, 42.24, 37.27; IR (KBr) ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$):1698, 1652, 1604, 1541, 1498, 1418, 1369, 1324, 1311; MS (ESI): m/z $476[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 476.17802$, found 476.17530 .
(E)-2-(2-(4-(3-(3,4,5-Trifluorophenyl)acryloyl)piperazin-1-yl)ethyl)-1H benzo[de]isoquinoline-1,3(2H)-dione (5m)

This compound was prepared according to the method described for compound 5a by employing compound $\mathbf{8}$ ($367 \mathrm{mg}, 1 \mathrm{mmol}$), EDCI ($210 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{HOBt}(13.5 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3,4,5-trifluorocinnamic acid ($202 \mathrm{mg}, 1 \mathrm{mmol}$) to obtain the pure product $\mathbf{5 n}$ as yellow solid. (187 mg , yield 78%); mp: $215^{\circ} \mathrm{C} ;^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.62(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.24$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.73-3.58(\mathrm{~m}, 4 \mathrm{H}), 2.79(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.67$ (bs, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.32,164.16,139.42,133.96,131.55,131.18,128.13$, $126.91,122.53,119.52,111.60,111.56,111.47,111.43,55.48,53.35,52.90,45.85,42.23,37.22$; IR (KBr) $\left(\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\right): 1698,1687,1630,1605,1587,1451,1389,1363,1348 ; \mathrm{MS}(E S I): \mathrm{m} / \mathrm{z} 494$ $[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 494.16860$, found 494.16584 .

Biology

Cytotoxic activity

The cytotoxic activity of the compounds was determined using MTT assay. ${ }^{34}$ Cells were seeded in $200 \mu \mathrm{~L}$ DMEM, supplemented with 10% FBS in each well of 96 -well microculture plates and incubated for 24 h at $37^{\circ} \mathrm{C}$ in a CO_{2} incubator. After 24 h of incubation cells were treated with test compounds 48 h . After 48 h of incubation, $10 \mu \mathrm{l}$ MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl tetrazolium bromide) $(5 \mathrm{mg} / \mathrm{ml})$ was added to each well and the plates were further incubated for 4 h . Then the supernatant from each well was carefully removed, formazon crystals were dissolved in $200 \mu \mathrm{~L}$ of DMSO and absorbance at 570 nm wavelength was recorded.

In vitro growth inhibition

The screening of anticancer activity is evaluated by the NCI, USA, according to standard procedures (http://dtp.nci.nih.gov/ branches/btb/ivclsp.html).

4.2.3. CD spectroscopic studies

Circular dichroism experiments were carried out using JASCO 815 CD spectropolarimeter (Jasco, Tokyo, Japan). CD spectrum was recorded from 225 to 325 nm to find out the conformational changes in the CT DNA after complex interaction. For each CD experiment, about $15 \times 10^{-6} \mathrm{M}$ of CT DNA was used initially. Further, to evaluate the effect of compounds on DNA conformation, CD spectra were recorded in 1:0 and 1:1 molar ratios. CD titrations were performed in 100 mM $\mathrm{TE}(\mathrm{pH} 7.0)$ at $25^{\circ} \mathrm{C}$. Each spectrum was recorded three times and the average of three scans was taken.

UV-visible spectroscopy titrations

UV-visible spectroscopy titrations were performed using ABI Lambda 40 UV-Vis spectrophotometer (Foster City, USA) at $25{ }^{\circ} \mathrm{C}$ using 1 cm path length quartz cuvette. Stock solutions of $25 \mu \mathrm{M}$ of NBT3 and NBT6 solution and $25 \mu \mathrm{M}$ CT DNA were prepared in 100 mM TE (pH 7.0). The compound stock solution was prepared in DMSO and diluted to the required concentration in suitable buffer solutions. The quartz cells were thoroughly cleaned with distilled water and followed by nitric acid $(\sim 0.1 \mathrm{~N})$ after each experiment. UV-visible absorption titrations were done by adding CT DNA to the quartz cuvette containing approximately $25 \mu \mathrm{M}$ hybrid solution. Preparation of CT DNA and the complexes were done on the same day of performing the experiment. Titrations were carried out until the hybrid absorption band remains at a fixed wavelength upon successive additions of CT DNA.

Fluorescence spectroscopy titrations

Fluorescence emission spectra were measured at $25^{\circ} \mathrm{C}$ using a Hitachi F 4500 spectrofluorimeter (Maryland, USA) using a 1 cm path length quartz cuvette. Quartz cuvettes was thoroughly washed with distilled water and dilute nitric acid (approximately 0.1 N) to minimize non-specific binding of the molecules to the surface of the cuvette. Throughout the fluorescence experiment, the concentration of the $\mathbf{4 b}$ and $\mathbf{4 a}$ compounds were kept constant $(10 \mu \mathrm{M})$ and titrated with increasing concentrations of CT DNA (multiples of $0.5 \mu \mathrm{M}$). Fluorescence spectra were recorded after each addition of CT DNA to the fluorescent cuvette. Both the compounds were excited at 350 nm and emission spectra for each titration were recorded from 355 to 500 nm . Each spectrum was recorded three times and the average of three scans was taken.

kDNA Decatenation Assay or Topo II inhibition assay

In order to test the role of synthetic hybrids $\mathbf{4 a} / \mathbf{4} \mathbf{b}$ in topo II inhibition, decatenation of kDNA was carried out using the protocol mentioned in Topo II Drug Screening Kit (TG 1009, Topogen, USA). Topoisomerase II inhibition was assayed using the ATP dependent decatenation of kDNA. Reactions were carried out in $20 \mu \mathrm{l}$ and contained $120 \mathrm{mM} \mathrm{KCl}, 50 \mathrm{mM}$ Tris- HCl , (pH 8), 10 mM $\mathrm{MgCl}_{2}, 0.5 \mathrm{mM}$ dithiothreitol, 0.5 mM ATP, $30 \mathrm{mg} / \mathrm{ml}$ bovine serum albumin, 200-300 ng of kDNA, and topoisomerase II (5 units). The amount of topoisomerase II (5 units) was adjusted in preliminary experiments to decatenate approximately 100% of the kDNA under our assay conditions. Authentic decatenated DNA was used as controls to identify decatenated kDNA. kDNA in the presence of topo II enzyme was incubated with $100 \mu \mathrm{M}$ of amonafide, $\mathbf{4 a}$ and $\mathbf{4 b}$. The sample in which $100 \mu \mathrm{M}$ of amonafide was added will serve as control. The reactions were incubated at $37^{\circ} \mathrm{C}$ for 30 min and terminated by the addition of $2 \mu \mathrm{l}$ of a stop buffer containing $10 \%(\mathrm{w} / \mathrm{v})$ SDS and $2 \mu \mathrm{l}$ of $0.5 \mathrm{mg} / \mathrm{ml}$ proteinase-K and incubated for 10 min at $37^{\circ} \mathrm{C}$. After completion of the reaction, the products in the reaction mixture were separated by 1% agarose gel. The products in the agarose gel were visualized after staining with ethidium bromide ($0.2 \mathrm{mg} / \mathrm{ml}$). The gels were run at 100 V for about 40 min and visualized under UV transillumination (BIO RAD gel doc XR^{+}, USA).

Molecular modelling

The crystal co-ordinates of topoisomerase-II α subunit were retrieved from the protein data bank (PDB ID: 1ZXM). As topoisomerase-II is a homodimer and co-crystal and metal atom are present in each chain, hence the chain α was considered for molecular modelling studies. The protein
preparation tool was used for the preparation of receptor model (Schrödinger 2017-1). The tool adds missing side chains and loops and also removes water molecules with a distance of more than $5 \AA$ away from the active pocket. The ATP binding site with $20 \AA$ equally in each direction of X , Y , and Z was used for receptor grid generation. The potent ligands $\mathbf{4 a}$ and $\mathbf{4 b}$ were sketched by using 2D sketcher and different conformers were generated using Ligprep module of Schrödinger suite. The ligands were docked into the active site of topoisomerase-II α using GLIDE-XP 7.4 (Extra Precision) mode. The docking for DNA intercalation has been performed in the same manner as mentioned above using duplex DNA obtained from protein data bank (PDB ID: 1NAB).

$\stackrel{\text { N }}{\text { ָ }}$

$\stackrel{9}{7}$

バ

$\stackrel{\text { ヘิ }}{\substack{\text { ² }}}$
$\underset{N}{\text { N }}$

${ }^{13}$ C NMR Spectrum of Compound 3d

$\stackrel{\text { Ǹ }}{\stackrel{1}{2}}$

${ }^{13}$ C NMR Spectrum of Compound 3e

${ }^{13}$ C NMR Spectrum of Compound 5a
$\underbrace{\text { Min }}$

${ }^{1} \mathbf{H}$ NMR Spectrum of Compound 5b

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 5d

${ }^{13}$ C NMR Spectrum of Compound 5 g

${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 5 i

KM12	06.17 ± 0.1	04.95 ± 0.2
SW-620	03.19 ± 0.2	02.60 ± 0.1
$\boldsymbol{C N S}$		
SF-268	06.07 ± 0.2	05.01 ± 0.3
SF-295	04.91 ± 0.3	03.48 ± 0.4
SF-539	06.43 ± 0.4	07.59 ± 0.3
SNB-19	04.50 ± 0.2	06.23 ± 0.3
SNB-75	09.44 ± 0.1	03.52 ± 0.3
U251	04.39 ± 0.2	04.37 ± 0.1

Melanoma

LOX IMVI	04.93 ± 0.2	04.15 ± 0.3
MALME-3M	07.47 ± 0.3	04.99 ± 0.4
M14	08.63 ± 0.3	08.76 ± 0.2
MDA-MB-435	05.52 ± 0.4	04.60 ± 0.5
SK-MEL-2	06.49 ± 0.3	06.62 ± 0.4
SK-MEL-28	11.00 ± 0.4	11.10 ± 0.5
SK-MEL-5	03.70 ± 0.4	02.73 ± 0.3
UACC-257	05.65 ± 0.4	05.83 ± 0.5
UACC-62	06.61 ± 0.4	04.97 ± 0.5

Ovarian		
IGROV1	07.91 ± 0.3	06.05 ± 0.4
OVCAR-3	07.34 ± 0.4	07.91 ± 0.5
OVCAR-4	$11.30 \pm 0.210 .50 \pm$	05.33 ± 0.3
OVCAR-5	0.3	14.10 ± 0.2
OVCAR-8	03.80 ± 0.4	02.77 ± 0.3
NCI/ADR-RES	06.20 ± 0.2	04.05 ± 0.3
SK-OV-3	08.35 ± 0.3	07.65 ± 0.2

Renal		
$786-0$	05.82 ± 0.2	05.91 ± 0.3
A498	22.30 ± 0.3	05.63 ± 0.4
ACHN	04.09 ± 0.4	03.50 ± 0.2
CAKI-1	04.91 ± 0.3	04.32 ± 0.3
SN12C	05.50 ± 0.2	05.22 ± 0.4
TK-10	10.50 ± 0.3	07.91 ± 0.4
UO-31	06.21 ± 0.2	03.07 ± 0.3
RXF 393	06.32 ± 0.3	05.46 ± 0.5

Prostate

PC-3	06.31 ± 0.4	04.50 ± 0.5
DU-145	05.92 ± 0.6	05.21 ± 0.4

Breast		
MCF7	04.65 ± 0.2	04.08 ± 0.3
MDA-MB231/ATCC	>100	11.70 ± 0.2
HS 578T	43.30 ± 0.4	06.53 ± 0.2
BT-549	11.90 ± 0.3	04.86 ± 0.2
T-47D	05.12 ± 0.1	03.07 ± 0.2
MDA-MB-468	04.79 ± 0.2	03.63 ± 0.3

Note: (a) Values are reported as GI_{50}, the $\mu \mathrm{M}$ concentration of the compound required to cause 50% inhibition of cell growth; (b) 4a NSC : 761409 / 1); (c) 4b (NSC:761421/1).

Materials and Methods

The cell lines for the MTT assay namely, HT-29, A549 and MCF-7 cell lines were procured room the National Centre for Cell Sciences (NCCS, Pune, India). The cells were cultured in Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% fetal bovine serum (Invitrogen) and an antibiotic (100 units $/ \mathrm{mL}$ Penicillin and $100 \mu \mathrm{~g} / \mathrm{mL}$ Streptomycin) solution (Sigma). The cells were grown in a humidified atmosphere with $5 \% \mathrm{CO}_{2}$ and 95% air at $37{ }^{\circ} \mathrm{C}$.

