Synthesis, biological evaluation, and structure activity relationship (SAR) study of pyrrolidine derivatives as N -acylethanolamine Acid Amidase (NAAA) inhibitors

Pan Zhou, Lei Xiang, Dongsheng Zhao, Jie Ren, Yan Qiu and Yuhang Li*

[^0]
## Supplemental Experimental Procedures

## 1. Materials and methods

### 1.1 Materials and instruments

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker 400 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were registered in $\mathrm{CDCl}_{3}, \mathrm{~d}_{6}$-DMSO, or $\mathrm{CD}_{3} \mathrm{OD}$, and chemical shifts are expressed in parts per million ( $\delta$ ) relative to internal $\mathrm{Me}_{4} \mathrm{Si}$. IR spectra were recorded on a Nicolet Avatar 360 RT-IR spectrophotometer. Mass spectra were recorded on an Applied Biosystems MDS SCIEX 3200Q TRAP mass spectrometry (MS) system with electrospray ionization (ESI) and direct injection. The HRFABMS spectra were recorded on a Bruker APEX-FTMS apparatus.
All reagents used in the present study were purchased from Sigma-Aldrich (Shanghai, China), seeking the highest grade commercially available unless otherwise indicated. Tetrahydrofuran (THF) was distilled prior to use from sodium benzophenone ketyl. Methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from phosphorus pentoxide. Dimethylformamide (DMF) was distilled from calcium hydride. Silica gel (300-400 mesh) from Yantai Athy Chemical Technology Co. Ltd. (Zhifu, China) was used for column chromatography, and compounds were eluted with ethyl acetate (EtOAc) /petroleum ether (PE) $\left(60-90^{\circ} \mathrm{C}\right)$ mixture (unless otherwise stated). HPLC analysis was run on Agilent-1200 series HPLC system equipped with a photodiode array detector, using a Hypersil Gold C18 column (dimensions $250 \times 4.6 \mathrm{~mm}$, particle size 5 mm ). Photodiode array (PDA) detector range was set as $210-600 \mathrm{~nm}$.

### 1.2 Synthesis of pyrrolidine inhibitors

1.2.1 Synthesis of acids 1l-1~1t-1, 3e-1~3j-1, 4d-1 and 4g-1 (Scheme 1)

A solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.06 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added dropwise to a mixture of aryl halide ( 1.5 mmol ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.07 \mathrm{~g}, 0.06 \mathrm{mmol})$ and 3-(4boronophenyl) propanoic acid ( 3 mmol ) in toluene ( 10 mL ) and EtOH ( 5 mL ) under a nitrogen atmosphere. The resulting solution was stirred under $80{ }^{\circ} \mathrm{C}$ for 2 h , then quenched with $5 \%$ aqueous HCl , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel and $\mathbf{1 1} \mathbf{- 1} \sim \mathbf{1 t} \mathbf{- 1}, \mathbf{3 e} \mathbf{- 1} \mathbf{3 j} \mathbf{- 1}, \mathbf{4 d} \mathbf{- 1}$ and $\mathbf{4 g - 1}$ were then obtained.

### 1.2.2 Synthesis of acids 1c-1~1k-1, 2c-1, 2d-1, 2g-1~2j-1, 3a-1~3d-1 and 3i-1

 (Scheme 2)To a solution of (5-carboxypentyl)triphenylphosphonium bromide ( $457 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) in THF ( 15 mL ) was added slowly a solution of $2 \mathrm{M} \mathrm{LiHMDS}(2.5 \mathrm{mmol}, 1.25 \mathrm{~mL}$ THF) under nitrogen atmosphere at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$
for 15 min , and allowed to warm slowly to $0^{\circ} \mathrm{C}$ in 0.5 hour. After being stirred at $0^{\circ} \mathrm{C}$ for 1 hour, a solution of appropriate aldehyde ( 1.55 mmol ) in THF ( 2 mL ) was slowly added at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm slowly to $0^{\circ} \mathrm{C}$ and stirred at the same temperature for 18 hour. The reaction was quenched with 15 mL aqueous 4 M HCl and extracted with EtOAc ( $3 \times 5 \mathrm{~mL}$ ). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue in EtOAc ( 10 mL ) was treated with $10 \% \mathrm{Pd} / \mathrm{C}(200 \mathrm{mg})$ and purged with $\mathrm{H}_{2}$. After stirring for 2 hours at room temperature, the reaction mixture was filtered through celite and concentrated under reduced pressure to afford the acids $\mathbf{1 c - 1 \sim 1 \mathbf { k } \mathbf { 1 } \text { , }}$ $\mathbf{2 c} \mathbf{- 1}, \mathbf{2 d} \mathbf{- 1}, \mathbf{2 g - 1} \mathbf{2 j} \mathbf{j} \mathbf{1 , ~ 3 a - 1 ~ 3 d - 1}$, and $\mathbf{3 i - 1}$.

### 1.2.3 Synthesis of amides $1 c \sim 1 t, 2 c, 2 d, 2 g \sim 2 j, 3 a \sim 3 j, 4 d$ and $4 g$ (Scheme 3)

Pyrrolidine $(0.03 \mathrm{~mL}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a mixture of appropriate acid ( 0.3 mmol ), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) ( $115 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}, 0.6 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under a nitrogen atmosphere. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 4 h , then quenched with saturated aqueous ammonium chloride, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel and $\mathbf{1 c} \sim \mathbf{1 t}$, $\mathbf{2 c}, \mathbf{2 d}, \mathbf{2 g} \sim \mathbf{2}, \mathbf{3 a} \sim \mathbf{3}, \mathbf{4 d}$ and $\mathbf{4 g}$ were then obtained.

### 1.2.4 Synthesis of compounds $2 a$ and $2 b$ (Scheme 4)

To a solution of (5-carboxypentyl)triphenylphosphonium bromide ( $1368 \mathrm{mg}, 3 \mathrm{mmol}$ ) in THF ( 30 mL ) was added slowly a solution of 2 M LiHMDS $(2.5 \mathrm{mmol}, 2.5 \mathrm{~mL}$ THF) under nitrogen atmosphere at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , and allowed to warm slowly to $0^{\circ} \mathrm{C}$ in 0.5 hour. After being stirred at $0^{\circ} \mathrm{C}$ for 1 hour, a solution of appropriate aldehyde ( 3.1 mmol ) in THF ( 2 mL ) was slowly added at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm slowly to $0^{\circ} \mathrm{C}$ and stirred at the same temperature for 18 hours. The reaction was quenched with 15 mL aqueous 4 M HCl and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1: 5) to afford the crude product $\mathbf{2 a - 1}$ and $\mathbf{2 b} \mathbf{- 1}$.

To a stirred solution of crude acid ( $\sim 200 \mathrm{mg}$ ), 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDCI) ( $115 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}, 0.6$ mmol ) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, was added a mixture of pyrrolidine $(0.03 \mathrm{~mL}$, $0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 4 h , then
quenched with saturated aqueous ammonium chloride, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 10 \mathrm{~mL}$ ). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue in EtOAc ( 10 mL ) was treated with $10 \% \mathrm{Pd} / \mathrm{C}(200 \mathrm{mg})$ and purged with $\mathrm{H}_{2}$. After stirring for 2 hours at room temperature, the reaction mixture was filtered through celite and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1: 5) to afford amides 2a and $\mathbf{2 b}$.

### 1.2.5 Synthesis of amides $2 e$ and $2 f$ (Scheme 5)

A solution of $\mathbf{2 g}$ or $\mathbf{2 h}(0.05 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ was added dropwise to a solution of lithium hydroxide $(\mathrm{LiOH})(0.3 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 4 hour, then quenched with $5 \%$ aqueous HCl , and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel and $\mathbf{2 e}$ and $\mathbf{2 f}$ were then obtained.

### 1.2.6 Synthesis of amides 4 a (Scheme 6)

To a solution of (2-carboxymethyl) triphenylphosphonium bromide ( $1200 \mathrm{mg}, 3$ mmol ) in THF ( 30 mL ) was added slowly a solution of 2 M LiHMDS ( $2.5 \mathrm{mmol}, 2.5$ mL THF) under nitrogen atmosphere at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $78^{\circ} \mathrm{C}$ for 15 min , and allowed to warm slowly to $0^{\circ} \mathrm{C}$ in 0.5 hour. After being stirred at $0^{\circ} \mathrm{C}$ for 1 hour, a solution of 4-phenylcyclohexanecarbaldehyde ( $564 \mathrm{mg}, 3 \mathrm{mmol}$ ) in THF ( 2 mL ) was slowly added at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm slowly to $0^{\circ} \mathrm{C}$ and stirred at the same temperature for 18 hours. The reaction was quenched with 15 mL aqueous 4 M HCl and extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1: 5) to afford the crude product 4a-1. Pyrrolidine ( $0.03 \mathrm{~mL}, 0.4 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a mixture of crude 4a-1 ( $\sim 150 \mathrm{mg}$ ), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) ( $115 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}, 0.6 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under a nitrogen atmosphere. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 4 h , then quenched with saturated aqueous ammonium chloride, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel and $\mathbf{4 a}$ was then obtained.

### 1.2.7 Synthesis of amides 4b (Scheme 7)

A solution of the 3-(4-hydroxyphenyl)propanoic acid ( $166 \mathrm{mg}, 1 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{OH}$ $(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated with 0.2 mL of $\mathrm{SOCl}_{2}$. After stirring for 1 h at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was concentrated. The residue was added dropwise to a mixture of 1iodobenzene ( $204 \mathrm{mg}, 1 \mathrm{mmol}$ ) and $\mathrm{NaH}(48 \mathrm{mg}, 2 \mathrm{mmol})$ in anhydrous DMSO ( 5 mL ) under a nitrogen atmosphere. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 4 h , then quenched with saturated aqueous ammonium chloride ( 50 mL ), and extracted with EtOAc ( $5 \times 10 \mathrm{~mL}$ ). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1: 5) and $\mathbf{4 b} \mathbf{- 1}$ was then obtained.

To a stirred solution of crude $\mathbf{4 b} \mathbf{- 1}(50 \mathrm{mg})$, 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDCI) ( $115 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}, 0.6$ $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, was added a mixture of pyrrolidine $(0.03 \mathrm{~mL}$, $0.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 4 h , then quenched with saturated aqueous ammonium chloride, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 10 \mathrm{~mL}$ ). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue in EtOAc ( 10 mL ) was treated with $10 \% \mathrm{Pd} / \mathrm{C}(200 \mathrm{mg})$ and purged with $\mathrm{H}_{2}$. After stirring for 2 hours at room temperature, the reaction mixture was filtered through celite and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1: 5) to afford amides 4b.

### 1.2.8 Synthesis of amides 4c (Scheme 8)

The methyl 3-(4-oxocyclohexyl)propanoate ( $184 \mathrm{mg}, 1 \mathrm{mmol}$ ) was added to a mixture of $\mathrm{NaBH}_{4}(76 \mathrm{mg}, 2 \mathrm{mmol})$ in THF $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at room temperature for 4 h , then quenched with saturated aqueous ammonium chloride ( 50 mL ), and extracted with EtOAc ( $5 \times 10 \mathrm{~mL}$ ). The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was added to a solution of tosyl chloride ( $190 \mathrm{mg}, 1 \mathrm{mmol}$ ) and $\mathrm{NaH}(24 \mathrm{mg}, 1 \mathrm{mmol})$ in DMSO ( 10 mL ) at room temperature. After stirring for 1 h , phenol ( $94 \mathrm{mg}, 1 \mathrm{mmol}$ ) in DMSO ( 1 mL ) was added dropwise. The reaction mixture was allowed to warm at $120^{\circ} \mathrm{C}$ and was stirred for 24 h . The reaction was quenched with $4 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and extracted with EtOAc $(5 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, filtered, and concentrated under reduced pressure. The residue was added to a solution of NaOH $(41 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5+5 \mathrm{~mL})$ at room temperature. After stirring for 2 h , the reaction was quenched with $4 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and extracted with EtOAc. The
combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1:3) and $\mathbf{4 c}-\mathbf{1}$ was then obtained.

Pyrrolidine ( $0.03 \mathrm{~mL}, 0.4 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a mixture of crude $\mathbf{4 c}-1$ ( 62 mg ), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) ( $115 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}, 0.6 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ mL ) under a nitrogen atmosphere. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 4 h , then quenched with saturated aqueous ammonium chloride, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel and $\mathbf{4 c}$ was then obtained.

### 1.2.9 Synthesis of amides $4 e$ and $4 f$ (Scheme 9)

Pyrrolidine ( $0.03 \mathrm{~mL}, 0.4 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a mixture of crude $\mathbf{4 f} \mathbf{- 1}$ ( $65 \mathrm{mg}, 0.3 \mathrm{mmol}$ ), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) ( $115 \mathrm{mg}, 0.6 \mathrm{mmol}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(0.08 \mathrm{~mL}, 0.6 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ under a nitrogen atmosphere. The resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 4 h , then quenched with saturated aqueous ammonium chloride, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc/PE 1:3) and $4 \mathbf{f}$ was then obtained.
$4 \mathbf{f}(10 \mathrm{mg})$ in EtOAc ( 10 mL ) was treated with $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ and purged with $\mathrm{H}_{2}$. After stirring for 2 hours at room temperature, the reaction mixture was filtered through celite and concentrated under reduced pressure to afford the compound $\mathbf{4 e}$.

## 1-(pyrrolidin-1-yl)-7-o-tolylheptan-1-one (1c)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 c - 1}$ with pyrrolidine afford $\mathbf{1 c}$ as white solid; 26 mg , yield $32 \% ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( $\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.23(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2$ H), 3.38 (t, J = 7.0 Hz, 2 H ), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.04-7.11$ (m, 4 H$) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 20.9,24.3,24.7,26.0,29.0,29.2,31.2,33.2,34.0,45.5$, $46.5,125.7,125.8,128.2,130.1,135.0,139.4,171.6 \mathrm{ppm}$; MS (ESI, m/z): $274(\mathrm{M}+$
$\mathrm{H})^{+}$.

## 1-(pyrrolidin-1-yl)-7-m-tolylheptan-1-one (1d)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 d - 1}$ with pyrrolidine afford $\mathbf{1 d}$ as white solid; 37 mg , yield $45 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ $(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2$ H), $3.38(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-7.01(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=$ $3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.9,24.3,24.7,26.0,29.0,29.2$, $31.2,33.2,34.0,45.5,46.5,125.8,126.5,128.0,129.5,137.8,142.3,178.9,171.6$ ppm; MS (ESI, m/z): $274(\mathrm{M}+\mathrm{H})^{+}$.

## 1-(pyrrolidin-1-yl)-7-p-tolylheptan-1-one (1e)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 e}-\mathbf{1}$ with pyrrolidine afford $\mathbf{1 e}$ as white solid; 31 mg , yield $38 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( $\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2$ H), 3.38 (t, J $=7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.45\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$ ), $7.10-7.14(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.9,24.3,24.7,26.0,29.0,29.2,31.2,33.2,34.0,45.5$, $46.5,128.5,128.8,135.0,141.0,171.6 \mathrm{ppm}$; MS (ESI, m/z): $274(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(2-fluorophenyl)-1-(pyrrolidin-1-yl)heptan-1-one (1f)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 1f1 with pyrrolidine afford $\mathbf{1 f}$ as white solid; 57 mg , yield $68 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( $\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.45(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{td}, \mathrm{J}=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 2$ H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2,31.2,33.8,34.5$, $45.5,46.5,115.6(\mathrm{~d}, \mathrm{~J}=22.5 \mathrm{~Hz}), 124.0(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=32.0 \mathrm{~Hz}), 130.6$ $(\mathrm{d}, \mathrm{J}=18.0 \mathrm{~Hz}), 130.9(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}), 172.3 \mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z}): 278(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(3-fluorophenyl)-1-(pyrrolidin-1-yl)heptan-1-one (1g)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 g} \mathbf{- 1}$ with pyrrolidine afford $\mathbf{1 g}$ as white solid; 44 mg , yield $53 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, 7.0 Hz, 2 H), $2.45(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20-7.24(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2$, $31.2,33.8,34.5,45.5,46.5,112.5(\mathrm{~d}, \mathrm{~J}=21.3 \mathrm{~Hz}), 116.1(\mathrm{~d}, \mathrm{~J}=22.0 \mathrm{~Hz}), 120.0(\mathrm{~d}, \mathrm{~J}$ $=2.5 \mathrm{~Hz}), 130.2(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 146.0(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}), 164.0(\mathrm{~d}, \mathrm{~J}=248.0 \mathrm{~Hz}), 172.5$ ppm; MS (ESI, m/z): $278(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(4-fluorophenyl)-1-(pyrrolidin-1-yl)heptan-1-one (1h)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 h} \mathbf{- 1}$ with pyrrolidine afford $\mathbf{1 h}$ as white solid; 60 mg , yield $72 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ $(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 6.95-7.00 (m, 2 H ), 7.10-7.14 (m, 2 H$) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2,31.2,33.8,34.5,45.5$, $46.5,115.5(\mathrm{~d}, \mathrm{~J}=22.5 \mathrm{~Hz}), 129.2(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 140.0(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 162.0(\mathrm{~d}, \mathrm{~J}=$ 245.0 Hz ), 172.5 ppm ; MS (ESI, m/z): $278(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(2-chlorophenyl)-1-(pyrrolidin-1-yl)heptan-1-one (1i)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 1i$\mathbf{1}$ with pyrrolidine afford $\mathbf{1 i}$ as white solid; 18 mg , yield $21 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, 7.0 Hz, 2 H), 2.23 (t, J = 7.8 Hz, 2 H ), $2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.21(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2,31.2,33.6,34.0,45.5$, $\mathrm{H})^{-}$.

## 7-(3-chlorophenyl)-1-(pyrrolidin-1-yl)heptan-1-one (1j)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 j}$ $\mathbf{1}$ with pyrrolidine afford $\mathbf{1} \mathbf{j}$ as white solid; 9 mg , yield $10 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, 7.0 Hz, 2 H), 2.23 (t, J = 7.8 Hz, 2 H), 2.60 (t, J = 8.0 Hz, 2 H), $3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.08 (d, J = $7.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.15-7.18$ (m, 3 H ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2,31.2,33.6,34.5$, $45.5,46.5,127.0,128.5,129.8,134.3,145.2,172.5 \mathrm{ppm}$; MS (ESI, m/z): 292 (M -$\mathrm{H})^{-}$.

## 7-(4-chlorophenyl)-1-(pyrrolidin-1-yl)heptan-1-one (1k)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 k} \mathbf{- 1}$ with pyrrolidine afford $\mathbf{1 k}$ as white solid; 4 mg , yield $5 \% ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, 7.0 Hz, 2 H), 2.23 (t, J = 7.8 Hz, 2 H), $2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.08 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.21 (d, J = $8.0 \mathrm{~Hz}, 2$ H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2,31.2,33.6,34.5$, 45.5, 46.5, 128.5, 130.2, 132.1, 140.3, 178.5 ppm; MS (ESI, m/z): 292 (M - H) ${ }^{-}$.

## 3-(4-(2-methylphenyl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (11)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 111 with pyrrolidine afford $\mathbf{1 1}$ as white solid; 56 mg , yield $65 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$ ), $3.31(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.19$
(m, 6 H), 7.32-7.37 (m, 1 H) ppm; MS (ESI, m/z): $294(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-(3-methylphenyl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (1m)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 m} \mathbf{- 1}$ with pyrrolidine afford $\mathbf{1 m}$ as white solid; 29 mg , yield $32 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}$, 3 H ), 7.33 (d, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.51 (d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ) ppm; MS (ESI, m/z): 294 (M $+\mathrm{H})^{+}$.

## 3-(4-(4-methylphenyl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (1n)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 n} \mathbf{- 1}$ with pyrrolidine afford $\mathbf{1 n}$ as white solid; 11 mg , yield $12 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}$ ), $3.31(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.29 (d, J = 8.0 Hz, 2 H ), 7.46-7.51 (m, 4 H ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 21.0, 24.4, 26.0, 30.8, 36.7, 45.6, 46.5, 126.8, 126.9, 128.8, 129.4, 136.8, 138.1, 138.9, 140.3, 170.7 ppm ; MS (ESI, m/z): $294(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-(2-fulorophenyl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (10)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 0 - 1}$ with pyrrolidine afford $\mathbf{1 0}$ as white solid; 17 mg , yield $19 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ (t, J = 6.8 Hz, 2 H ), 3.47 (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.10-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H})$, 7.33 (d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.39 (t, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.48(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; MS
(ESI, m/z): $298(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-(3-fulorophenyl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (1p)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 p - 1}$ with pyrrolidine afford $\mathbf{1 p}$ as white solid; 6 mg , yield $7 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ $(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.32-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; MS (ESI, m/z): $298(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-(4-fulorophenyl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (1q)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 q - 1}$ with pyrrolidine afford $\mathbf{1 q}$ as white solid; 16 mg , yield $17 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ ( $\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.47(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.57(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$; MS (ESI, m/z): $298(\mathrm{M}+$ $\mathrm{H})^{+}$.

## 3-(4-(2-chlorophenyl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (1r)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 r} \mathbf{- 1}$ with pyrrolidine afford $\mathbf{1 r}$ as white solid; 31 mg , yield $33 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ $(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1$ H), 7.30 (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.35 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ) ppm; MS (ESI, m/z): $312(\mathrm{M}-$ H) ${ }^{-}$.

## 3-(4-(3-chlorophenyl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (1s)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{1 s - 1}$ with pyrrolidine afford $\mathbf{1 s}$ as white solid; 23 mg , yield $24 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ $(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.56(\mathrm{~m}, 4 \mathrm{H})$ ppm; MS (ESI, m/z): $312(\mathrm{M}-\mathrm{H})^{\text {² }}$.

## 3-(4-(4-chlorophenyl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (1t)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 1t1 with pyrrolidine afford $\mathbf{1 t}$ as white solid; 68 mg , yield $72 \% ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.59(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ ( t , J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.47 ( $\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.33(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.46-7.48 (m, 4 H ) ppm; MS (ESI, m/z): 312 (M - H) ${ }^{\text {. }}$

## 7-(3-hydroxyphenyl)-1-(pyrrolidin-1-yl)heptan-1-one (2a)



The reaction afford 2a as yellow solid; 57 mg , yield $7 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3} / \mathrm{D}_{2} \mathrm{O}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.93(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38$ $(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.61-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1$ H), 7.10-7.15 (m, 1 H$) \mathrm{ppm}$; MS (ESI, m/z): $276(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(4-hydroxyphenyl)-1-(pyrrolidin-1-yl)heptan-1-one (2b)



The reaction afford $\mathbf{2 b}$ as yellow solid; 33 mg , yield $4 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz ,
$\left.\mathrm{CDCl}_{3} / \mathrm{D}_{2} \mathrm{O}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.93(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38$ (t, J = 7.0 Hz, 2 H ), 3.45 (t, J = 7.0 Hz, 2 H ), 6.83 (d, $2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}$ ), 7.10 (d, $2 \mathrm{H}, \mathrm{J}$ $=8.2 \mathrm{~Hz}) \mathrm{ppm} ; \mathrm{MS}(E S I, \mathrm{~m} / \mathrm{z}): 276(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(3-methoxyphenyl)-1-(pyrrolidin-1-yl)heptan-1-one (2c)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{2 c - 1}$ with pyrrolidine afford $\mathbf{2 c}$ as white solid; 34 mg , yield $39 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( $\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 6.73-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.15-7.20 (m, 1 H$) \mathrm{ppm}$; MS (ESI, m/z): $290(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(4-methoxyphenyl)-1-(pyrrolidin-1-yl)heptan-1-one (2d)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 2d-1 with pyrrolidine afford 2d s white solid; 68 mg , yield $78 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, 7.0 Hz, 2 H), 2.23 (t, J = 7.8 Hz, 2 H), $2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}$, $\mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z}): 290(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(7-oxo-7-(pyrrolidin-1-yl)heptyl)benzoic acid (2e)



Following the General Procedure 1.2.4 (eluent: EtOAc/PE 1: 2), the reaction of $\mathbf{2 g}$ with pyrrolidine afford 2e as yellow oil; 13 mg , yield $87 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, 7.0 Hz, 2 H) $2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.93$ (m, 2 H ) ppm; MS (ESI, m/z): $304(\mathrm{M}+\mathrm{H})^{+}$.

## 4-(7-oxo-7-(pyrrolidin-1-yl)heptyl)benzoic acid (2f)



Following the General Procedure 1.2.4 (eluent: EtOAc/PE 1: 2), the reaction of $\mathbf{2 h}$ with pyrrolidine afford $\mathbf{2 f}$ as yellow oil; 8 mg , yield $53 \%$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{tt}, \mathrm{J}=$ $6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.23 (t, J = 7.8 Hz, 2 H ), 2.62 (t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.38 (t, J = 7.0 Hz , 2 H ), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.26-7.28 (m, 2 H ), 8.01 (d, J = 7.8 Hz, 2 H ) ppm; MS (ESI, m/z): $304(\mathrm{M}+\mathrm{H})^{+}$.

## methyl 3-(7-oxo-7-(pyrrolidin-1-yl)heptyl)benzoate (2g)



Following the General Procedure $\mathbf{1 . 2}$.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{2 g}-\mathbf{1}$ with pyrrolidine afford $\mathbf{2 g}$ as white solid; 23 mg , yield $24 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, 7.0 Hz, 2 H) $2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.95 (s, 3 H ), $7.33-7.36$ (m, 1 H ), 7.81 ( $\mathrm{s}, 1 \mathrm{H}$ ), 7.84-7.85 (m, 1 H) ppm; MS (ESI, m/z): $318(\mathrm{M}+\mathrm{H})^{+}$.

## methyl 4-(7-oxo-7-(pyrrolidin-1-yl)heptyl)benzoate (2h)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 2h-1 with pyrrolidine afford 2h as white solid; 36 mg , yield $38 \%$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, 7.0 Hz, 2 H), 2.23 (t, J = 7.8 Hz, 2 H), 2.62 (t, J = 7.6 Hz, 2 H ), $3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.92 ( $\mathrm{s}, 3 \mathrm{H}$ ), 7.22 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.00 (d, $\mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2$, 31.2, 33.6, 34.5, 45.5, 46.5, 51.9, 127.5, 128.6, 129.7, 148.8, 167.5, $178.5 \mathrm{ppm} ; \mathrm{MS}$ (ESI, m/z): $318(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(3-propylphenyl)-1-(pyrrolidin-1-yl)heptan-1-one (2j)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 2i1 with pyrrolidine afford $\mathbf{2 i}$ as white solid; 42 mg , yield $46 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}$ $=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.93(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.23(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-7.01(\mathrm{~m}, 3 \mathrm{H})$, $7.22(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z}): 302(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(4-propylphenyl)-1-(pyrrolidin-1-yl)heptan-1-one (2k)



Following the General Procedure $\mathbf{1 . 2}$.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{2 k - 1}$ with pyrrolidine afford $\mathbf{2 k}$ as white solid; 21 mg , yield $23 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.40(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.68(\mathrm{~m}, 6 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}$ $=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.93(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.23(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.38(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-7.10(\mathrm{~m}, 4 \mathrm{H})$ ppm; MS (ESI, m/z): $302(\mathrm{M}+\mathrm{H})^{+}$.

## 7-(pyridin-2-yl)-1-(pyrrolidin-1-yl)heptan-1-one (3a)



Following the General Procedure 1.2.3 (eluent: EtOAc), the amidation of 3a-1 with pyrrolidine afford 3a as white solid; 61 mg , yield $78 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{tt}, \mathrm{J}=6.4$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.56(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2$ H), $3.45(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.88(\mathrm{~m}, 1$ H), 8.67 (d, J = $4.7 \mathrm{~Hz}, 1 \mathrm{H}$ ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3$, 24.7, 26.0, $29.0,29.2,31.2,34.2,34.5,45.5,46.5,120.5,123.1,136.5,150.0,163.3,178.5 \mathrm{ppm}$; MS (ESI, m/z): $261(\mathrm{M}+\mathrm{H})^{+}$.


Following the General Procedure 1.2.3 (eluent: EtOAc), the amidation of 3b-1 with pyrrolidine afford 3b as white solid; 45 mg , yield $58 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{tt}, \mathrm{J}=6.4$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2$ H), 3.45 (t, J = 7.0 Hz, 2 H ), 7.20-7.22 (m, 1 H), 7.48-7.51 (m, 1 H ), 8.40-8.43 (m, 2 H) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2,31.2,34.2,34.9$, $45.5,46.5,120.5,123.1,136.5,150.0,163.3,178.5 \mathrm{ppm}$; MS (ESI, m/z): $261(\mathrm{M}+$ $\mathrm{H})^{+}$.

## 1-(pyrrolidin-1-yl)-7-(thiophen-2-yl)heptan-1-one (3c)



Following the General Procedure 1.2.3 (eluent: EtOAc), the amidation of $\mathbf{3 c} \mathbf{- 1}$ with pyrrolidine afford $\mathbf{3 c}$ as white solid; 65 mg , yield $82 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{tt}, \mathrm{J}=6.4$, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.23 (t, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.56 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.38 (t, J = 7.0 Hz, 2 H), 3.45 (t, J = 7.0 Hz, 2 H ), 6.75-6.80 (m, 1 H$), 6.88$ (d, J = 5.1, 3.0 Hz, 1 H ), 7.02 (d, J = 5.1 Hz, 1 H ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2$, 31.2, 34.2, 34.9, 45.5, 46.5, 122.8, 124.5, 127.3, 145.6, 178.5 ppm ; MS (ESI, m/z): $266(\mathrm{M}+\mathrm{H})^{+}$.

## 1-(pyrrolidin-1-yl)-7-(thiophen-3-yl)heptan-1-one (3d)



Following the General Procedure 1.2.3 (eluent: EtOAc), the amidation of 3d-1 with pyrrolidine afford 3d as white solid; 60 mg , yield $76 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ (tt, J = 6.4, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.23 (t, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.56 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.38 (t, J = 7.0 Hz, 2 H), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $6.95-7.00(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 24.3,24.7,26.0,29.0,29.2,31.2,34.2,34.9,45.5,46.5$, 120.3, 125.5, 129.3, 143.3, 178.5 ppm ; MS (ESI, m/z): $266(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-( pyridin-2-yl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (3e)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{3 e - 1}$ with pyrrolidine afford $\mathbf{3 e}$ as white solid; 9 mg , yield $11 \%$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 1.71-1.87(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ $(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.73(\mathrm{~m}, 4$ H), 8.62 (dd, J = 4.4, $1.6 \mathrm{~Hz}, 2 \mathrm{H}$ ) ppm; ${ }^{13} \mathrm{C}$ NMR ( 100 MHz , DMSO) $\delta 24.4,26.1$, $30.5,35.8,45.7,46.2,121.4,127.1,129.7,135.2,143.6,147.3,150.7,169.9 \mathrm{ppm} ; \mathrm{MS}$ (ESI, m/z): $281(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-( pyridin-3-yl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (3f)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 3f1 with pyrrolidine afford 3f as white solid; 7 mg , yield $8.3 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 1.71-1.87(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ $(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.73(\mathrm{~m}, 4$ H), $8.62(\mathrm{dd}, \mathrm{J}=4.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{DMSO}$ ) $\delta 24.4,26.1$, $30.5,35.8,45.7,46.2,121.4,127.1,129.7,135.2,143.6,147.3,150.7,169.9 \mathrm{ppm} ; \mathrm{MS}$ (ESI, m/z): $281(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-(thiophen-2-yl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (3g)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{3 g - 1}$ with pyrrolidine afford $\mathbf{3 g}$ as white solid; 55 mg , yield $63 \% ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.23(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $6.50-6.80(\mathrm{~m}, 1 \mathrm{H}), 7.0-7.7$ (m, 6 H$) \mathrm{ppm} ; \mathrm{MS}$ (ESI, m/z): $281(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-(thiophen-3-yl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (3h)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 3h-1 with pyrrolidine afford $\mathbf{3 h}$ as white solid; 62 mg , yield $74 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.36-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ ( tt, J = 6.4, 7.0 Hz, 2 H), 2.23 (t, J = 7.8 Hz, 2 H ), $2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.45 (t, J = $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.15-5.20 (m, 1 H$), 7.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.70(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm}$; MS (ESI, m/z): $281(\mathrm{M}+\mathrm{H})^{+}$.

## 7-cyclohexyl-1-(pyrrolidin-1-yl)heptan-1-one (3i)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 3i$\mathbf{1}$ with pyrrolidine afford $\mathbf{3 i}$ as white solid; 54 mg , yield $67.4 \%$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.83-0.93(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.35(\mathrm{~m}, 12 \mathrm{H}), 1.65-1.72(\mathrm{~m}, 7 \mathrm{H}), 1.81-1.88(\mathrm{~m}$, 2 H ), 1.91-1.98 (m, 2 H ), $2.25(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.47(\mathrm{~m}, 4 \mathrm{H})$, ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.3,26.0,24.5,26.5,26.6,26.7,29.4,29.5,33.4,34.1,37.2$, 37.6, 45.5, 46.5, 125.8, 126.5, 128.0, 129.5, 137.8, 142.3, 178.9, 171.6 ppm; MS (ESI, $\mathrm{m} / \mathrm{z}): 267(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-cyclohexylphenyl)-1-(pyrrolidin-1-yl)propan-1-one (3j)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 3j$\mathbf{1}$ with pyrrolidine afford $\mathbf{3 j}$ as white solid; 12 mg , yield $14 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.30-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.8-2.01(\mathrm{~m}, 9 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.48-3.00(\mathrm{~m}, 3 \mathrm{H})$, 3.02 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.31 (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.47 (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.10-7.15 (m, 4 H ) ppm; MS (ESI, m/z): $286(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-(cyclohexyloxy)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (3k)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 3k-1 with pyrrolidine afford 3k as white solid; 66 mg , yield $73 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.30-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-2.00(\mathrm{~m}, 8 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 4.40-4.50 (m, 1H), $6.85(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$; MS (ESI, $\mathrm{m} / \mathrm{z}): 302(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-phenylcyclohexyl)-1-(pyrrolidin-1-yl)propan-1-one (4a)



Following the General Procedure 1.2.6 (eluent: EtOAc/PE 1: 5), the amidation of 4a-1 with pyrrolidine afford $\mathbf{4 a}$ as white solid; 111 mg , yield $13 \% ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13-2.0(\mathrm{~m}, 13 \mathrm{H}), 2.38-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ $(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.8-7.5(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z}):$ $286(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-phenoxyphenyl)-1-(pyrrolidin-1-yl)propan-1-one (4b)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 4b-1 with pyrrolidine afford $\mathbf{4 b}$ as white solid; 48 mg , yield $54 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.76-1.89(\mathrm{~m}, 4 \mathrm{H}), 2.51(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3,26$ $(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.42(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ; \mathrm{MS}(\mathrm{ESI}, \mathrm{m} / \mathrm{z}): 296(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-phenoxycyclohexyl)-1-(pyrrolidin-1-yl)propan-1-one (4c)



Following the General Procedure 1.2.8 (eluent: EtOAc/PE 1: 5), the amidation of
$\mathbf{4 c}-1$ with pyrrolidine afford $\mathbf{4 c}$ as white solid; 105 mg , yield $35 \% ;{ }^{1} \mathrm{H}$ NMR ( 400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23-2.0(\mathrm{~m}, 13 \mathrm{H}), 2.51(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3,26$ (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.44 (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.27-4.38 (m, 1H), 6.8-7.4 (m, 5 H$)$ ppm; MS (ESI, m/z): $302(\mathrm{M}+\mathrm{H})^{+}$.

## 3-(4-(benzo[d][1,3]dioxol-5-yl)phenyl)-1-(pyrrolidin-1-yl)propan-1-one (4d)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 10), the amidation of $\mathbf{4 d} \mathbf{- 1}$ with pyrrolidine afford $\mathbf{4 d}$ as white solid; 56 mg , yield $58 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 1.71-1.87(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ (t, J = 6.8 Hz, 2 H ), 3.36 (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.99 (s, 2 H ), 6.5-7.3 (m, 7 H ) ppm; MS (ESI, m/z): $324(\mathrm{M}+\mathrm{H})^{+}$.

## 5-(benzo[d][1,3]dioxol-5-yl)-1-(pyrrolidin-1-yl)pentan-1-one (4e)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 4e-1 with pyrrolidine afford $\mathbf{4 e}$ as white solid; 26 mg , yield $96 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.64-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.83(\mathrm{tt}, \mathrm{J}=6.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{tt}, \mathrm{J}=6.4,6.8 \mathrm{~Hz}, 2$ H), 2.27 (t, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.64(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.37 (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.45(\mathrm{t}$, $\mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 6.80-7.00(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$; MS (ESI, m/z): $276(\mathrm{M}+\mathrm{H})^{+}$.

## (2E,4E)-5-(benzo[d][1,3]dioxol-5-yl)-1-(pyrrolidin-1-yl)penta-2,4-dien-1-one (4f)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of 4f1 with pyrrolidine afford $\mathbf{4 f}$ as white solid; 27 mg , yield $57 \%$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 1.71-1.87(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.28$ (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.36(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 1 \mathrm{H})$, 6.75-6.82 (m, 3 H ), $6.91(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;$ MS (ESI, m/z): $272(\mathrm{M}+\mathrm{H})^{+}$.

## (E)-3-(4-phenylphenyl)-1-(pyrrolidin-1-yl)prop-2-en-1-one (4g)



Following the General Procedure 1.2.3 (eluent: EtOAc/PE 1: 5), the amidation of $\mathbf{4 g} \mathbf{- 1}$ with pyrrolidine afford $\mathbf{4 g}$ as white solid; 29 mg , yield $34 \%$; ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.91-1.98(\mathrm{~m}, 42), 2.01-2.08(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.70(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.39 (t, J = $7.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.48(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}) \mathrm{ppm}$; MS (ESI, m/z): $284(\mathrm{M}+\mathrm{H})^{+}$.

## 7-o-tolylheptanoic acid (1c-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the Wittig reaction afforded $\mathbf{1 c - 1}$ as oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}$, 4 H ), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.11(\mathrm{~m}, 4$ H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 20.9,24.0,28.9,29.2,30.0,33.2,34.0,125.7$, $125.8,128.2,130.1,135.0,139.4,180.0 \mathrm{ppm}$;

## 7-m-tolylheptanoic acid (1d-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the Wittig reaction afforded 1d-1 as oil; 148 mg , yield $45 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}$, 4 H ), $1.59-1.70(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2$ H), 6.95-7.00 (m, 3 H ), $7.21(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ $21.0,24.2,28.8,28.9,30.9,34.0,35.8,125.8,126.5,128.0,129.5,137.8,142.3,178.9$ ppm;

## 7-p-tolylheptanoic acid (1e-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the Wittig reaction afforded $1 \mathrm{e}-1$ as oil; 183 mg , yield $55 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}$, 4 H ), 1.59-1.70 (m, 4 H ), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2$
H), 7.10-7.14 (m, 4 H$) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0,24.2,28.8,28.9$, $30.9,34.0,35.8,128.5,128.8,135.0,141.0,180.0 \mathrm{ppm}$.

## 7-(2-fluorophenyl)heptanoic acid (1f-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the Wittig reaction afforded $\mathbf{1 f} \mathbf{- 1}$ as oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}$, $4 \mathrm{H}), 2.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{td}, \mathrm{J}$ $=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.14-7.19 (m, 2 H ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.2$, 28.8, 28.9, 29.9, 34.0, $35.8,115.6(\mathrm{~d}, \mathrm{~J}=22.5 \mathrm{~Hz}), 124.0(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=$ $32.0 \mathrm{~Hz}), 130.6(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}), 130.9(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}), 179.5 \mathrm{ppm}$

## 7-(3-fluorophenyl)heptanoic acid (1g-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{1 g - 1}$ as oil; 23 mg , yield $7 \% ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}, 4$ H), 1.59-1.70 (m, 4 H ), $2.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85-6.90$ (m, 2 H ), $6.94(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.2,28.8,28.9,30.9,34.0,35.8,112.5(\mathrm{~d}, \mathrm{~J}=21.3 \mathrm{~Hz}), 116.1(\mathrm{~d}, \mathrm{~J}=22.0$ $\mathrm{Hz}), 120.0(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 130.2(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 146.0(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}), 164.0(\mathrm{~d}, \mathrm{~J}=$ 248.0 Hz ), 180.1 ppm

## 7-(4-fluorophenyl)heptanoic acid (1h-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{1 h} \mathbf{- 1}$ as oil; 47 mg , yield $14 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}$, 4 H ), 1.59-1.70 (m, 4 H ), $2.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-7.00$ (m, 2 H ), 7.10-7.14 (m, 2 H ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.2$, 28.8, 28.9, $29.6,34.0,35.8,115.5(\mathrm{~d}, \mathrm{~J}=22.5 \mathrm{~Hz}), 129.2(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 140.0(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz})$, $162.0(\mathrm{~d}, \mathrm{~J}=245.0 \mathrm{~Hz}), 180.0 \mathrm{ppm}$

## 7-(2-chlorophenyl)heptanoic acid (1i-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{1 i} \mathbf{i} \mathbf{1}$ as oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.70(\mathrm{~m}$, 4 H ), $2.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.62(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.21$ (m, 2 H ), 7.30-7.33 (m, 1 H ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.2$, 28.8, 28.9, $29.5,34.0,35.5,127.0,127.2,130.1,130.2,134.5,140.1,180.1 \mathrm{ppm}$.

## 7-(3-chlorophenyl)heptanoic acid (1j-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{1 j} \mathbf{- 1}$ as oil; 31 mg , yield $8.6 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.36-1.42(\mathrm{~m}$, 4 H ), 1.59-1.70 (m, 4 H ), $2.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08$ (d, J $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.18(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.2,28.8$, $28.8,30.5,34.1,35.6,127.0,128.5,129.8,134.3,145.2,180.1 \mathrm{ppm}$.

## 7-(4-chlorophenyl)heptanoic acid ( $1 \mathrm{k}-1$ )



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{1 k - 1}$ as oil; 16 mg , yield $4 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}, 4$ H), 1.59-1.70 (m, 4 H), $2.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.58(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.08 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.2,28.8$, $28.8,30.5,34.1,35.6,128.5,130.2,132.1,140.3,178.5 \mathrm{ppm}$.

## 3-(4-(2-methylphenyl)phenyl)propanoic acid (11-1)



Following the General Procedure 1.2.1 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{1 1}-1$ as oil; 18 mg , yield $5 \% ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.20(\mathrm{~s}, 3 \mathrm{H})$,
2.73 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.19(\mathrm{~m}, 6 \mathrm{H})$, 7.32-7.37 (m, 1 H) ppm.

## 3-(4-(3-methylphenyl)phenyl)propanoic acid (1m-1)



Following the General Procedure 1.2.1 (eluent: $\mathrm{EtOAc} / \mathrm{PE} 1: 3$ ), the wittig reaction afforded $\mathbf{1 m - 1}$ as oil; 45 mg , yield $45 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.39(\mathrm{~s}, 3 \mathrm{H})$, 2.73 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.00(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.15 (m, 2 H ), 7.31 (m, 3 H ), 7.33 (d, J = 7.6 Hz, 2 H), $7.51(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

## 3-(4-(4-methylphenyl)phenyl)propanoic acid (1n-1)



Following the General Procedure 1.2.1 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{1 n} \mathbf{- 1}$ as oil; 137 mg , yield $38 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 2.39(\mathrm{~s}, 3 \mathrm{H})$, 2.73 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.00 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.23-7.30 (m, 4 H ), 7.47 (d, J = 8.0 $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.51 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$.

## 7-(3-methoxyphenyl)heptanoic acid (2c-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{2 c - 1}$ as oil; 36 mg , yield $10 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}$, 4 H), 1.59-1.70 (m, 4 H), 2.41 (t, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.58 (t, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.81 ( $\mathrm{s}, 3$ H), 6.73-6.75 (m, 2 H ), 6.75 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.15-7.20 (m, 1 H ) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 24.2,28.8,28.9,30.5,34.1,35.6,56.3,111.2,113.8,121.5$, 128.5, 144.5, 160.2, 179.5 ppm .

## 7-(4-methoxyphenyl)heptanoic acid (2d-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded 2d-1 as oil; 64 mg , yield $18 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.35-1.40(\mathrm{~m}$, 4 H ), 1.60-1.70 (m, 4 H ), $2.41(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3$ H), $6.82(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 24.5,28.8,28.9,31.5,34.1,35.0,55.2,113.8,128.5,134.5,158.4,180.0$ ppm.

## 7-(3-(methoxycarbonyl)phenyl)heptanoic acid (2g-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{2 g - 1}$ as oil; 33 mg , yield $8.3 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.35-1.40(\mathrm{~m}$, 4 H ), 1.60-1.72 (m, 4 H ), 2.57 (t, J = $7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.62(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3$ H), 7.33-7.36(m, 1 H ), $7.81(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.85(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 23.9,28.8,29.2,31.1,34.1,35.0,51.9,127.1,128.5,130.1,130.2,133.2$, 143.5, 170.4, 179.8 ppm .

## 7-(4-(methoxycarbonyl)phenyl)heptanoic acid (2h-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{2 h} \mathbf{- 1}$ as oil; 91 mg , yield $23 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.35-1.40(\mathrm{~m}$, 4 H ), 1.60-1.72 (m, 4 H ), $2.50(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3$ H), $7.22(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 23.9,28.8,29.2,31.1,34.1,35.0,51.9,127.5,128.6,129.7,148.8,167.5$, 179.8 ppm .

## 7-(pyridin-2-yl)heptanoic acid (3a-1)



Following the General Procedure 1.2.2 (eluent: $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ 1: 15), the wittig
reaction afforded 3a-1 as oil; 11 mg , yield $3.5 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.38-$ $1.42(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.88(\mathrm{~m}, 1 \mathrm{H}), 8.67$ (d, J = $4.7 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.1,28.8,29.2,30.5,34.1,35.0,123.0,136.1$, 136.5, 147.6, 149.4, 179.8 ppm.

## 7-(pyridin-3-yl)heptanoic acid (3b-1)



Following the General Procedure 1.2.2 (eluent: $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ 1: 15), the wittig reaction afforded $\mathbf{3 b}-\mathbf{1}$ as oil; 18 mg , yield $6 \% ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38-$ 1.48 (m, 4 H ), 1.60-1.70 (m, 4 H ), $2.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.20-7.22 (m, 1 H), 7.48-7.51 (m, 1 H$), 8.40-8.43(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.1,28.8,29.2,30.5,34.1,35.0,123.0,136.1,136.5,147.6,149.4$, 180.0 ppm.

## 7-(thiophen-2-yl)heptanoic acid (3c-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded $\mathbf{3 c - 1}$ as oil; 125 mg , yield $39 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}$, 4 H ), 1.59-1.70 (m, 4 H ), 2.41 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.65 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 6.75-6.80 (m, 1 H), $6.88(\mathrm{~d}, \mathrm{~J}=5.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 24.2,28.8,28.9,30.5,34.1,35.6,56.3,122.8,124.5,127.3$, 145.6, 182.1 ppm.

## 7-(thiophen-3-yl)heptanoic acid (3d-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded 3d-1 as oil; 98 mg , yield $31 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.36-1.42(\mathrm{~m}$, 4 H ), 1.59-1.70 (m, 4 H ), 2.41 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.65 (t, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 6.95-7.00 (m, 2 H ), 7.23 (d, J = $5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 24.2,28.8$, $28.9,29.2,30.1,34.1,120.3,125.5,129.3,143.3,182.1 \mathrm{ppm}$.

## 7-cyclohexylheptanoic acid (3i-1)



Following the General Procedure 1.2.2 (eluent: EtOAc/PE 1: 3), the wittig reaction afforded 3i-1 as oil; 157 mg , yield $49 \%$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.83-0.93(\mathrm{~m}$, 2 H ), 1.15-1.35 (m, 12 H ), 1.65-1.72 (m, 7 H ), 2.35 (t, J = 7.8 Hz, 2 H ) ppm; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 24.5,26.5,26.6,26.7,29.4,29.5,33.4,34.1,37.2,37.6$, 180.1 ppm;

### 1.3 HPLC-MS/MS Analysis

A HPLC-MS/MS method was developed and validated for free fatty acids (FFAs) quantification. An ABI 3200 Q-Trap mass spectrometer equipped with Agilent 1200HPLC system was used. FFAs were eluted at $1.0 \mathrm{~mL} \mathrm{~min}^{-1}$ at $40^{\circ} \mathrm{C}$ with MeOH : water ( $95: 5, \mathrm{v} / \mathrm{v}$, each containing $0.25 \%$ acetic acid and $5 \mathrm{mmol} / \mathrm{L}$ ammonium acetate, $\mathrm{pH}=7.4$. The molecular ions were monitored by ESI negative mode at $\mathrm{m} / \mathrm{z}=267$ for heptadecenoic acid, m/z 303 for arachidonic acid, and m/z 269 for heptadecanoic acid.

### 1.4 Protein preparation and enzymatic assay

HEK293 cells overexpressing rat NAAA (HEK293-rNAAA) ${ }^{1}$ and rat FAAH (HEK293-rFAAH) ${ }^{2}$ were kind gifts from Dr. Daniele Piomelli in University of California, Irvine. HEK293 cells overexpressing rat NAAA (HEK293-rNAAA) or rat FAAH (HEK293-rFAAH) were maintained in Dulbecco's modified Eagle medium (DMEM, Hyclone, Beijing, China) supplemented with $10 \%$ fetal bovine serum (FBS, Gibco®, Shanghai, China) containing $0.3 \mathrm{mg} / \mathrm{mL}$ geneticin G418. HEK293-rNAAA or HEK293-rFAAH cells were harvested, washed with PBS, sonicated in 20 mM Tris $-\mathrm{HCl}(\mathrm{pH}=7.5)$ containing 0.32 M sucrose, and centrifuged at $800 \times \mathrm{g}$ for 15 min at $4^{\circ} \mathrm{C}$. The supernatants were collected, and the protein concentrations were measured by a BCA protein assay kit (Pierce, Shanghai, China). NAAA activity was measured by incubating $30 \mu \mathrm{~g}$ recombinant rNAAA protein with $25 \mu \mathrm{M}$ heptadecenoylethanolamide at $37^{\circ} \mathrm{C}$ for 30 min in 0.2 mL of phosphate buffer ( 50 $\mathrm{mM}, \mathrm{pH}=4.5$ ) containing $0.1 \%$ Triton $\mathrm{X}-100$ and 3 mM dithiothreitol with or without the tested compounds. FAAH activity was measured by incubating $30 \mu \mathrm{~g}$ of protein derived from the HEK293-rFAAH cell extract at $37^{\circ} \mathrm{C}$ in Tris-HCl buffer (50 $\mathrm{mM}, \mathrm{pH}=8.0$ ) containing fatty acid-free bovine serum albumin ( $0.05 \%$ ). Anandamide $(25 \mu \mathrm{M})$ was used as the substrate for FAAH. The reactions were
terminated by adding $200 \mu \mathrm{~L}$ of methanol containing 1 nmol heptadecanoic acid as internal standard, and the remaining substrates were analysed by HPLC-MS/MS. AC activity was measured by incubating $100 \mu \mathrm{~g}$ of recombinant rAC protein at $37^{\circ} \mathrm{C}$ for 30 min in 0.2 mL of phosphate buffer ( $50 \mathrm{mM}, \mathrm{pH} 5.0$ ) containing $0.1 \%$ Triton X-100 and $3 \mathrm{mM} \mathrm{DTT}, 100 \mu \mathrm{M} \mathrm{N}$-lauroylceramide as the substrate, and the test compound. The reactions were terminated by adding 0.2 mL of methanol containing 1 nmol heptadecanoic acid, and the products were analyzed by LC/MS. $\mathrm{IC}_{50}$ of each compound was analysed by GraphPad Prism 5.

### 1.5 In Vitro chemical and rat plasma stability.

Chemical and rat plasma stability was investigated in basic Tris-HCl buffer ( 50 mM , $\mathrm{pH}=7.4)$, acidic phosphate buffer ( $50 \mathrm{mM}, \mathrm{pH}=5.0$ ), and $80 \%$ rat plasma solution (fresh plasma was diluted to $80 \%(\mathrm{v} / \mathrm{v})$ with $\operatorname{PBS}(\mathrm{pH}=7.4)$ ). Solutions $(5 \mu \mathrm{~L})$ of compounds $\mathbf{4 g}$ in DMSO were prepared and incubated with a buffer solution or plasma solution (final DMSO concentration $\leq 1 \%$; final compounds concentration $=1$ $\mu \mathrm{M})$. The resulting mixture was maintained at $37^{\circ} \mathrm{C}$ for 16 h and the remaining compound was analyzed by HPLC.

### 1.6 In vivo biological evaluation of $4 g$

All animal experiments were performed in accordance with Guide and Care and Use of Laboratory Animals from National Institutes of Health (NIH) and approved by the Animal Care and Use Committees of Xiamen University in China.

We used Lipopolysaccharides (LPS)-induced acute lung injury (ALI) model to test the anti-inflammatory effect of $\mathbf{4 g}$. 129s mice ( $20-22 \mathrm{~g}$ ) were randomly grouped, with 6-8 animals for each group. Mice were anesthetized and instilled intratracheally with LPS ( $7 \mathrm{mg} / \mathrm{kg}$ ) in $40-50 \mu \mathrm{~L}$ PBS. Oral administration of $\mathbf{4 g}(30 \mathrm{mg} / \mathrm{kg}$, dissolved in saline with $5 \%$ polyethylene glycol 400 and $5 \%$ tween 80 ) or its vehicle once daily with or without PPAR- $\alpha$ antagonist MK886 ( $2 \mathrm{mg} / \mathrm{kg}$, i.p.) starting from the day of LPS application. Animals were sacrificed 5 days after LPS treatment.

### 1.7 H\&E assay

The whole lungs of mice were harvested and fixed in paraformaldehyde at $4{ }^{\circ} \mathrm{C}$, followed by embedding in paraffin and sectioning to $5 \mu \mathrm{~m}$ using a microtome. The slices were then stained with hematoxylin and eosin (H\&E) after deparaffinized with xylene. Imaging of stained areas was performed with a light microscopy (Nikon, Shanghai, China) using $4 \times$ objectives.

### 1.8 Docking

Molecular docking was performed on Surflex-Dock GeomX module of Sybyl 2.0. Crystal structure of human NAAA (PDB code: 6DY2) obtained from Protein Data Bank was used as the receptors for molecular docking study. Our compound Structure was drawn and optimized with SYBYL package. The docking procedure was started with the protocol generation. The protocol was created using a ligand-based approach (native ligand for NAAA structure). Proto threshold was set to 0.5 and proto bloat was left at 0 as a default parameter. For docking, max conformation and max rotation values were 20 and 100, respectively. Docking results were compared by the total score values. A higher total-score value represents better docking of the ligands in the receptor site.

Table S1. Inhibitory effects of compounds $\mathbf{3 j}$, $\mathbf{3 k}$ and $\mathbf{~} \mathbf{g}$ on rat FAAH and rat AC activities ${ }^{[a]}$

|  | $\mathbf{I C}_{\mathbf{5 0}} \mathbf{( F A A H )}(\boldsymbol{\mu M})$ | AC Inhibition on $\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{M}$ |
| :---: | :---: | :---: |
| $\mathbf{3 j}$ | $33 \pm 8.5$ | $4 \%$ |
| $\mathbf{3 k}$ | $21 \pm 3.3$ | $8 \%$ |
| $\mathbf{4 g}$ | $550 \pm 70$ | $6 \%$ |

${ }^{[a]}$ Data are presented as $\mathrm{IC}_{50} \pm$ standard error of the mean. All experiments were performed in triplicate

## References

1. C. Solorzano, C. Zhu, N. Battista, G. Astarita, A. Lodola, S. Rivara, M. Mor, R. Russo, M. Maccarrone, F. Antonietti, A. Duranti, A. Tontini, S. Cuzzocrea, G. Tarzia and D. Piomelli, Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20966-20971.
2. J. Z. Patel, T. Parkkari, T. Laitinen, A. A. Kaczor, S. M. Saario, J. R. Savinainen, D. NaviaPaldanius, M. Cipriano, J. Leppanen, I. O. Koshevoy, A. Poso, C. J. Fowler, J. T. Laitinen and T. Nevalainen, Journal of medicinal chemistry, 2013, 56, 8484-8496.

[^0]:    * Corresponding author:

    Yuhang Li, yuhangli@fjirsm.ac.cn (YL.)

