## **Supplementary Materials**

## Synthesis and Potential Antiproliferative Activity of Dehydroabietylamine Imidazole Derivatives

Fengyi Zhao<sup>a, b</sup>, Wen Lu<sup>b</sup>, Fan Su<sup>c</sup>, Li Xu<sup>\*b, d, e</sup>, Dong Jiang<sup>b</sup>, Xu Sun<sup>c, f</sup>, Jiuzhou Shi<sup>b</sup>, Mengyi

Zhou <sup>c</sup>, Feng Lin <sup>c</sup>, Fuliang Cao <sup>\*\*a, d</sup>

<sup>a</sup> College of Forestry, Nanjing Forestry University, Nanjing 210037, PR China

<sup>b</sup> College of Science, Nanjing Forestry University, Nanjing 210037, PR China

<sup>c</sup> Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, PR China

<sup>d</sup>Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University

<sup>e</sup> Sate Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541001, PR China

<sup>f</sup> College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China

\*Email: xuliqby@njfu.edu.cn

## Contents

- 1. Fig. S1 Confocal fluorescence images of L<sup>0</sup>-FITC (100 nM) incubated with Hela cells for 2 h at 4 °C and 37 °C.  $\lambda_{ex} = 488$  nm.
- Fig. S2 Absorption spectra of L<sup>3</sup>, L<sup>4</sup>, L<sup>5</sup> (5×10<sup>-5</sup> M) in the absence and presence of increasing amounts of DNA at room temperature in Tris-NaCl-HCl buffer (pH = 7.3). The arrow shows the absorbance change when increasing the DNA concentration.
- 3. **Fig. S3-S12** <sup>1</sup>H, <sup>13</sup>C NMR Spectra
- 4. Fig. S13 The structure of  $L^6$  and  $L^7$ .
- 5. **Table S1** Peak areas of  $L^3$ - $L^5$  by HPLC.



Fig. S1 Confocal fluorescence images of L<sup>0</sup>-FITC (100 nM) incubated with Hela cells for 2 h at 4 °C and 37 °C.  $\lambda_{ex} = 488$  nm.



**Fig. S2** Absorption spectra of L<sup>3</sup>, L<sup>4</sup>, L<sup>5</sup> ( $5 \times 10^{-5}$ M) in the absence and presence of increasing amounts of DNA at room temperature in Tris-NaCl-HCl buffer (pH = 7.3). The arrow shows the absorbance change when increasing the DNA concentration.

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of compounds L<sup>1</sup>-L<sup>5</sup>.



Fig.S4 <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) spectrum of compound L<sup>1</sup>



Fig.S6<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) spectrum of compound L<sup>2</sup>



1 C13-NMR CDC13 303K AV-600



Fig.S8 <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) spectrum of compound L<sup>3</sup>





SFY-2-xianan-13C-CDC13



Fig.S10 <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) spectrum of compound L<sup>4</sup>



Fig.S12 <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) spectrum of compound L<sup>5</sup>



Fig. S13 The structure of  $L^6$  and  $L^7$ .

| Table S1 | Peak areas | of $L^3-L^5$ by | HPLC. |
|----------|------------|-----------------|-------|
|----------|------------|-----------------|-------|

| Comp.          | Peak areas (0 h) | Peak areas (24 h) |
|----------------|------------------|-------------------|
| $L^3$          | 13.9             | 14.1              |
| L <sup>4</sup> | 11.6             | 12.0              |
| $L^5$          | 19.9             | 19.6              |