Supporting Information for

Synthesis and biological evaluation of zinc chelating compounds as metallo- β-lactamase inhibitors

Working author list:

Geir Kildahl-Andersen ${ }^{\text {a }}$, Christian Schnaars ${ }^{\text {a }}$, Anthony Prandina ${ }^{\text {a }}$, Sylvie Radix ${ }^{\text {b }}$, Marc Le Borgne ${ }^{\text {b }}$, Lars Petter Jordheim ${ }^{\text {c }}$, Tor Gjøen ${ }^{\text {d }}$, Adriana Magalhães Santos Andresen ${ }^{\text {d }}$, Silje Lauksund ${ }^{\text {e }}$, Christopher Fröhlich $^{\mathrm{e}}$, Ørjan Samuelsen ${ }^{\mathrm{e}, \mathrm{f}}$, Pål Rongved ${ }^{\mathrm{a}}$ and Ove Alexander Høgmoen Åstrand ${ }^{\text {a* }}$

Affiliation list:

a Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, 0316 Oslo, Norway.
b EA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie - ISPB, Université de Lyon, Université Lyon 1, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7, F-69373, Lyon cedex 08, France
c Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
d Centre for Integrative Microbial Evolution (CIME), Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, Oslo, Norway.
e Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway.
f Department of Pharmacy, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.
g The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
*Corresponding author: Tel: +47 22854478; e-mail: o.a.h.astrand@,farmasi.uio.no

Contents

General synthetic information 4
Preparation of 1. 5
Preparation of 2 6
Preparation of $\mathbf{3}$ 9
Perparation of 6 12
Preparation of 7 14
Preparation of 8 16
Preparation of 9 17
Preparation of 10 18
Preparation of 11 19
Preparation of 12 20
Preparation of 13 21
Preparation of 14 22
Preparation of 16 23
Preparation of 17 25
Preparation of 18 27
Preparation of 19 29
Preparation of $\mathbf{2 0}$ 31
Preparation of 33 33
Preparation of $\mathbf{3 5}$ 35
Preparation of 36 37
Preparation of 37 39
Preparation of $\mathbf{3 8}$ 41
Preparation of 39 45
Preparation of 40 48
Preparation of 41 51
Preparation of 42 54
Preparation of 43 57
Preparation of 44 60
Preparation of 45 63
Preparation of 50 66
Preparation of 51 (mixture of $2 R / S$ anomers) 67
Table S1. Intrinsic activity of chelator alone towards various bacterial cell lines 70
Table S2. MIC values of meropenem (MEM) alone and in combination with boronic acid-containing chelators against 72
References: 73
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 8 74
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 9 76
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 10 78
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 11 80
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 12 82
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 13 84
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 14 86
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 17 90
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 18 92
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 19 94
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 20 96
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 33 98
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 35 100
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 36 102
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 37 104
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 38 106
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 39 108
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 40 110
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 41 112
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 42 114
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 43 116
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 44 118
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 45 120
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 50 122
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 51 124

General synthetic information

All reagents and solvents were of analytical grade and were used as received, without further purification. ${ }^{1} \mathrm{H}$ spectra were recorded with Bruker DPX300, AVII400, AVIIIHD400 and AVII600 Fourier transform spectrometers, using an internal deuterium lock, operating at $300 \mathrm{MHz}, 400 \mathrm{MHz}$ or 600 MHz resonance frequency for ${ }^{1} \mathrm{H}$ and $75 \mathrm{MHz}, 100 \mathrm{MHz}$ and 150 MHz for ${ }^{13} \mathrm{C}$. All spectra were recorded at $25^{\circ} \mathrm{C}$. Chemical shifts are reported in parts per million (ppm) relative to TMS by calibrating either using the residual protons of deuterated solvents, or the ${ }^{13} \mathrm{C}$ resonance from the deuterated solvent itself, with the following shifts: $\delta=2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=39.52 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR for DMSO- $d_{6}, \delta=7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=77.16 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR for chloroform- $d, \delta=3.31 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=49.00 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR for methanol $-d_{4}, \delta=5.32 \mathrm{ppm}$ and 54.00 ppm for ${ }^{13} \mathrm{C}$ NMR for dichloromethane $-d_{2}$ and $\delta=4.79 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR for $\mathrm{D}_{2} \mathrm{O}$. Spectral assignments were in some cases aided by inclusion of ${ }^{1} \mathrm{H}$-detected, gradient selected 2D experiments $\left({ }^{1} \mathrm{H},{ }^{1} \mathrm{H}\right.$-COSY, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HSQC and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\mathrm{HMBC}$), and carbon multiplicity determined either by APT, DEPT or multiplicityedited HSQC experiments. Mass spectra were recorded at 70 eV on a Waters Prospec Q or Micromass QTOF 2W spectrometer using ESI or APCI as the method of ionization. High-resolution mass spectra were recorded at 70 eV on a Waters Prospec Q or a Micromass QTOF 2 W spectrometer using ESI or APCI as the method of ionization. TLC analyses were carried out using either Merck Silica gel $60 \mathrm{~F}_{254}$ plates, Merck Aluminum Oxide (neutral) $60 \mathrm{~F}_{254}$ plates, or Merck Silica gel RP-18 $60 \mathrm{~F}_{254}$ plates, visualized by UV light. Compounds devoid of UV-absorbing chromophores were visualized using ninhydrin stain. The yields reported are of isolated material and are uncorrected for purity.

Preparation of 4-(c4-(2-(bis(pyridin-2-

ylmethyl)amino)acetamido)phenethyl)amino)-4-oxobutanoic acid (1).

5

Acetone $0^{\circ} \mathrm{C}$ - rt. >99\%

1

The amine $5(100 \mathrm{mg}, 0.27 \mathrm{mmol})$, prepared according to literature, ${ }^{1}$ was dissolved in 10 mL acetone and cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath. Succinic anhydride ($27 \mathrm{mg}, 0.27 \mathrm{mmol}$) was then added in one portion to the stirring solution. The ice-water bath was removed and the reaction was allowed to stir at room temperature overnight. The crude mixture was then concentrated under reduced pressure to give 126 mg of the title compound as a pale yellow solid ($>99 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.52$ $(\mathrm{s}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 4 \mathrm{H}), 3.55-3.09(\mathrm{~m}, 7 \mathrm{H}), 2.74-$ $2.58(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $173.84,170.87,169.02,158.40,149.01,136.81,136.67,134.40,128.89,123.03,122.39,119.01,59.42$, $57.80,40.32,34.61,30.15,29.36$. HR-MS (APCI, pos. mode) $\mathrm{m} / \mathrm{z} 476.2292$ calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{4}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right)$, found $m / z 476.2293$.

Preparation of 2-(4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenyl)acetic acid (2)

25
Ethyl 2-(4-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)phenyl)acetate (25). To a solution of ethyl 4azidophenylacetate $(24,5.00 \mathrm{~g}, 24.4 \mathrm{mmol})$, prepared according to the literature, ${ }^{2}$ in 58 mL acetonitrile, propargyl alcohol ($2.73 \mathrm{~g}, 48.7 \mathrm{mmol}$) and copper(I)iodide ($0.928 \mathrm{~g}, 4.87 \mathrm{mmol}$) was added. After stirring for 24 h , volatiles were removed under reduced pressure and the crude product purified using column chromatography on silica, using a gradient of ethyl acetate in dichloromethane. Removal of solvent gave the product as a yellow solid $(6.14 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.66(\mathrm{~s}, 1 \mathrm{H})$, $7.86(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.12 \mathrm{~Hz}, 2 \mathrm{H})$, $3.78(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI, positive mode) $\mathrm{m} / \mathrm{z} 262.3[\mathrm{M}+\mathrm{H}]^{+}$.

Ethyl 2-(4-(4-(((methylsulfonyl)oxy)methyl)-1H-1,2,3-triazol-1-yl)phenyl)acetate (26). Ethyl 2-(4-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)phenyl)acetate (25, $6.100 \mathrm{~g}, 23.35 \mathrm{mmol}$) was dissolved in 58 mL dichloromethane and kept in an ice bath. Triethylamine ($3.544 \mathrm{~g}, 35.02 \mathrm{~mol}$) was added, followed by methanesulfonyl chloride ($3.209 \mathrm{~g}, 28.02 \mathrm{mmol}$). The reaction mixture was kept stirring on ice bath for 3 h , after which volatiles were removed under reduced pressure. Purification of the crude product on a silica column, using a gradient of $5 \%-10 \%$ ethyl acetate in dichloromethane, gave, after removal of solvent, the product as a colourless solid $(5.11 \mathrm{~g}, 64 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.99(\mathrm{~s}, 1 \mathrm{H})$, $7.87(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.12 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Ethyl 2-(4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenyl)acetate (27). Di-(2picolyl)amine ($2.83 \mathrm{~g}, 14.2 \mathrm{mmol}$) was dissolved in acetonitrile. Potassium carbonate ($3.93 \mathrm{~g}, 28.4$ mmol) was added and the mixture was cooled down in an ice bath. The mesylate 26 prepared in the previous reaction ($4.82 \mathrm{~g}, 14.2 \mathrm{mmol}$), dissolved in acetonitrile (total volume of acetonitrile in the reaction was 310 mL), was subsequently added dropwise, and after removal of the ice bath, allowed to react at room temperature for 12 hours. Filtration through celite, and with subsequent wash of the celite with dichloromethane, gave, after removal of solvents, a crude product as a dark orange thick oil. Purification on a silica column, using a gradient of methanol in dichloromethane, with additional ammonia added to the mobile phase, gave the product as a dark orange oil. Purification was performed on three combined batches of different sizes, with a combined yield of $6.02 \mathrm{~g}(80 \%) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{td}, J=7.6 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 4 \mathrm{H}), 3.78(\mathrm{~s}$, $2 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. MS (ESI, positive mode) $\mathrm{m} / \mathrm{z} 443.2[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-(4-((Bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl) phenyl)acetic acid (2). Ethyl 2-(4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenyl)acetate (27, $323.1 \mathrm{mg}, 0.73$ mmol, 1.0 eq.) was dissolved in 10 mL THF and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. A solution of LiOH hydrate ($61 \mathrm{mg}, 1.46 \mathrm{mmol}, 2.0 \mathrm{eq}$.) in 5 mL water was added and the solution stirred at $0^{\circ} \mathrm{C}$ until TLC (Alumina, $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) indicated full conversion. The THF was removed under reduced pressure and the residual aqueous solution was adjusted to $\mathrm{pH}=6$ using HCl (aq.). The solvent was
removed under reduced pressure affording the product in quantitative yield, and used directly in the next step without further purification.

Preparation of 2-(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-yl methyl)amino)acetamido)phenyl)acetic acid (3).

Methyl 2-(4-aminophenyl)acetate hydrochloride. 2-(4-aminophenyl)acetic acid ($5.176 \mathrm{~g}, 34.2 \mathrm{mmol}, 1$ eq.) was suspended in 100 mL methanol and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To this mixture SOCl_{2} (2.89 $\mathrm{mL}, 41.07 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise over a period of 10 minutes. The mixture was stirred at $0^{\circ} \mathrm{C}$ for another 30 minutes, 1 h at room temperature and then refluxed for 14 h . The reaction mixture was then concentrated under reduced pressure to afford the title compound as a pale brown solid in quantitative yield that was taken to the next step without further purification. ${ }^{1} \mathrm{H}$ NMR was in accordance with published data. ${ }^{3}$

29
Methyl 2-(4-(2-bromoacetamido)phenyl)acetate (29). Methyl 2-(4-aminophenyl)acetate hydrochloride, prepared as described above ($6.89 \mathrm{~g}, 34.2 \mathrm{mmol}, 1 \mathrm{eq}$.) was suspended in 100 mL DCM and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. A solution of DMAP ($\left.7.51 \mathrm{~g}, 61.56 \mathrm{mmol}, 1.8 \mathrm{eq}.\right)$ and NMM ($3.75 \mathrm{~mL}, 34.2 \mathrm{mmol}$, 1 eq.) in 50 mL DCM was added dropwise over 30 minutes via a dropping funnel, followed by dropwise addition of bromoacetyl bromide (1.8 eq.) over 30 minutes at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for another 30 minutes and at room temperature for 12 h . The mixture was then washed with 0.1 M HCl (3 x 50 mL) and brine (50 mL) and the organic phase dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The product was isolated via column chromatography on SiO_{2} using isocratic elution with a $3: 1$ mixture of n-heptane and EtOAc to afford methyl 2-(4-(2bromoacetamido)phenyl)acetate (29) in 82% yield, as white solids, which could be used directly in the next step. Optional additional purification could be obtained by recrystallization from EtOAc.

Methyl
2-(4-(2-((2-(bis (pyridin-2-yl
methyl)amino)ethyl)(pyridin-2ylmethyl)amino)acetamido)phenyl)acetate (30). N^{1}, N^{1}, N^{2}-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (28), prepared as described in the literature, ${ }^{4}$ was dissolved in 50 mL CH 33 CN at room temperature. To this solution was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4 eq.) and KI (0.6 eq .), followed by methyl 2-(4-(2bromoacetamido)phenyl)acetate (29) (1.1 eq.). The mixture was heated to reflux for 16 h until TLC indicated full conversion of the amine. The mixture was then passed through a pad of celite using $\mathrm{CH}_{3} \mathrm{CN}$ as eluent and concentrated under reduced pressure. The product was isolated via column chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $1-2 \% \mathrm{MeOH}$ in DCM as eluent to afford the titled compound in 76% yield as a brown oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=4.8,0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.44(\mathrm{dd}, J=4.8,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}$, $4 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 171.74,169.46,158.98,158.53,149.03,148.72$, $137.41,136.66,136.35,129.64,129.17,123.07,122.75,122.39,122.05,119.11,60.16,59.65,58.15$, 51.74, 51.65, 51.14, 30.67.

30
3

2-(4-(2-((2-(Bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylethyl)amino)acetamido)phenyl)acetic acid (3). Methyl 2-(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2ylmethyl)amino)acetamido)phenyl)acetate ($\mathbf{3 0}, 922 \mathrm{mg}, 1.7 \mathrm{mmol}, 1 \mathrm{eq}$.$) was dissolved in 10 \mathrm{~mL}$ THF at $0{ }^{\circ} \mathrm{C}$. To this solution was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(144 \mathrm{mg}, 3.4 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) in 7 \mathrm{~mL}$ dest. $\mathrm{H}_{2} \mathrm{O}$ and the solution stirred at $0{ }^{\circ} \mathrm{C}$ until TLC indicated full conversion $\left(\mathrm{Al}_{2} \mathrm{O}_{3}, 5 \% \mathrm{MeOH}\right.$ in DCM$)$. The mixture was then concentrated under reduced pressure to remove the THF, and the residual aq. solution adjusted to pH 7 with 0.5 M HCl . The solvent was removed under reduced pressure to afford the product in
quantitative yield. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.20(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{dd}, J=4.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.44$ $(\mathrm{dd}, J=4.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{t}, J=9.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 4 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}) δ 174.40, 169.17, 158.98, 158.57, 149.04, $148.76,136.69,136.45,136.00,134.36,129.43,123.09,122.79,122.43,122.14,118.65,60.20,59.65$, 58.18, 51.76, 51.13, 44.97.

Perparation of 2-(4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol1 -yl)phenyl)ethan-1-amine (6).

tert-Butyl (4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenethyl)carbamate. Sodium-(+)-ascorbate ($10.15 \mathrm{~g}, 51.24 \mathrm{mmol}$) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(6.40 \mathrm{~g}, 25.62 \mathrm{mmol})$ was mixed rapidly in 60 mL water, and the resulting yellow solution transferred to a flask containing N-propargyl-di(2-picolyl)amine (22, $6.08 \mathrm{~g}, 25.62 \mathrm{mmol}$), prepared as described in the literature, ${ }^{5}$ dissolved in 60 mL tert-butanol. After rapid stirring, the resulting green solution was transferred to a flask containing tertbutyl 4-azidophenethylcarbamate $(\mathbf{2 1}, 5.60 \mathrm{~g}, 21.35 \mathrm{mmol})$, prepared following literature procedures, ${ }^{6}$ and allowed to stir for 15 h . The reaction mixture was diluted with ethyl acetate, and washed with $1: 1$ water/brine. The water phase was then alkalized to $\mathrm{pH} 9-10$ and extracted with ethyl acetate. Combined organic extracts was washed with a 0.025 M EDTA/ $0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ mixture and dried over sodium sulfate. Filtration and subsequent removal of solvent under reduced pressure gave a crude product as a brown oil which could be purified on neutral alumina, gradient $0-1 \%$ methanol in dichloromethane, giving the product as a thick orange oil. Purification was performed on three combined batches of different sizes, with a combined yield of $14.09 \mathrm{~g}(73 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H})$, $8.51(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{brt}, \mathrm{NH}$, $1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 4 \mathrm{H}), 3.19(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H})$. MS (ESI, positive mode) $m / z 500.5[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-(4-((Bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1-amine (6). To a solution of tert-butyl (4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1yl)phenethyl)carbamate ($12.70 \mathrm{~g}, 25.4 \mathrm{mmol}$) in 96 mL dioxane, 4 M HCl in dioxane (46 mL) was added slowly. After stirring under Ar overnight, the volatiles were removed under reduced pressure. The crude
product was redissolved in 50 mL saturated NaHCO_{3} solution (aq.) and extracted with 250 mL dichloromethane. This first extract contained product in a rather low purity. Repeated extractions with 100 mL dichloromethane (>10 repetitions) afforded, after removal of solvent under reduced pressure, pure product as an orange, thick oil $(8.98 \mathrm{~g}, 88.5 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.70(\mathrm{~s}, 1 \mathrm{H})$, $8.50(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.82$ $(\mathrm{s}, 4 \mathrm{H}), 2.83(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{br}, 2 \mathrm{H}) . \mathrm{MS}\left(\mathrm{ESI}\right.$, positive mode) $\mathrm{m} / \mathrm{z} 400.4[\mathrm{M}+\mathrm{H}]^{+}$.

Preparation of N-(4-(2-aminoethyl)phenyl)-2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamide (7).

31
tert-Butyl (4-(2-bromoacetamido)phenethyl)carbamate (31). tert-Butyl (4-aminophenethyl)carbamate $(4.5 \mathrm{~g}, 21.83 \mathrm{mmol}, 1.0 \mathrm{eq})$ was dissolved in $\mathrm{DCM}(150 \mathrm{~mL})$ and cooled to 0 degrees using an ice bath. DMAP (1.6 eq) was added in one portion to the stirring mixture, followed by bromoacetyl bromide (1.2 eq.), which was added dropwise by the aid of 50 mL DCM. The mixture was stirred for 30 minutes at 0 degrees and then 1.5 hour room temperature before it was concentrated in vacuo. The crude material was then purified using column chromatography on SiO_{2} with $75-100 \% \mathrm{EtOAc}$ in heptane as eluent. This gave a colorless solid which was used directly in the next step without further purification.

tert-Butyl
(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2ylmethyl)amino)acetamido)phenethyl)carbamate (32). $\quad N^{1}, N^{1}, N^{2}$-tris(pyridin-2-ylmethyl)ethane-1,2diamine ($\mathbf{2 8}, 315 \mathrm{mg}, 0.945 \mathrm{mmol}$) and $\mathbf{3 1}(387 \mathrm{mg}, 1.083 \mathrm{mmol})$ was dissolved in 300 mL MeCN at room temperature. $\mathrm{KI}(187 \mathrm{mg}, 1.126 \mathrm{mmol})$ and triethyl amine ($1.32 \mathrm{~mL}, 9.47 \mathrm{mmol}$) was then added to the stirring mixture. The reaction mixture was heated to reflux and left overnight. The crude mixture was then cooled to room temperature and concentrated under reduced pressure to give a thick oil. The crude product was dissolved in $1 \mathrm{M}_{2} \mathrm{CO}_{3}(100 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic phases were pooled, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and concentrated under reduced pressure. The pale green crude product was further purified by column chromatography on a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ column using $0-5 \% \mathrm{MeOH}$ in DCM as eluent to afford $155 \mathrm{mg}(27 \%)$ of the titled product. ${ }^{1} \mathrm{H}$ NMR (600 MHz , chloroform- d) $\delta 10.40(\mathrm{~s}, 1 \mathrm{H}), 8.51-8.48(\mathrm{~m}, 1 \mathrm{H}), 8.47-8.44(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=$
$8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H})$, $3.72(\mathrm{~s}, 6 \mathrm{H}), 3.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.40$ (s, 9H). ${ }^{13} \mathrm{C}$ NMR (151 MHz , chloroform-d) $\delta 169.92,159.14,158.18,155.93,149.55,149.08,136.94$, $136.59,136.47,134.40,129.17,123.15,123.11,122.56,122.11,119.99,61.01,60.47,58.70,52.09$, $51.59,43.50,41.90,35.66,28.48$. HRMS (TOF MS, ESI pos. mode): Calculated mass for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{7} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 610.3505$. Found: 610.3511

N-(4-(2-Aminoethyl)phenyl)-2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-
ylmethyl)amino)acetamide (7). The boc protected amine $32(135 \mathrm{mg}, 0.221 \mathrm{mmol})$ was dissolved in 10 mL DCM and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Trifluoroacetic acid ($1 \mathrm{~mL}, 13,06 \mathrm{mmol}$) was then dissolved in 10 mL DCM and added dropwise to the stirring mixture. The reaction was then allowed to warm to room temperature and left for 2 hours before it was concentrated under reduced pressure. The crude oil obtained was dissolved in 20 mL DCM and washed with $1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(3 \times 20 \mathrm{~mL})$. The organic phase was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and concentrated under reduced pressure to give $70 \mathrm{mg}(62 \%)$ of the titled product. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, chloroform- d) $\delta 10.39(\mathrm{~s}, 1 \mathrm{H}), 8.54-8.51(\mathrm{~m}, 1 \mathrm{H}), 8.50-8.46$ (m, 2H), $7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 6 \mathrm{H}), 3.75-$ $3.72(\mathrm{~m}, 6 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.16$ (s, 2H). ${ }^{13} \mathrm{C}$ NMR (151 MHz , chloroform- d) δ 169.94, 159.27, 158.31, 149.66, 149.18, 136.82, 136.66, $136.54,135.34,129.29,123.23,123.17,122.62,122.18,119.99,61.09,60.59), 58.80,52.20,51.68$, 43.77, 39.68. HRMS (TOF MS, ESI pos. mode): Calculated mass for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{7} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 510.2981$. Found: 510.2987.

Preparation of methyl (4-((4-(2-(bis(pyridin-2-ylmethyl)amino) acetamido) phenethyl)amino)-4-oxobutanoyl)-D-alanyl- D-alaninate (8).

Compound $1(0.250 \mathrm{~g}, 0.526 \mathrm{mmol})$ was dissolved in DMF $(2 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath. D-alanyl- D-alanine methyl ester hydrochloride ($116 \mathrm{mg}, 0.551 \mathrm{mmol}, 1.05$ equiv.) and HATU ($211 \mathrm{mg}, 0.555 \mathrm{mmol}, 1.06$ equiv) were then added, before $\mathrm{NMM}(120 \mathrm{uL}, 1.09 \mathrm{mmol}, 2.1$ equiv.) was added to the stirring mixture. The mixture was left in the ice-water bath for 30 minutes before slowly heating to room temperature. The mixture was then left for 18 hours at room temperature. The mixture was then diluted with $50 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with 5 x 10 mL EtOAc. The combined organic phases were combined, washed with fresh $0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(4 \times 25 \mathrm{~mL})$ and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and concentrated under reduced pressure. This afforded 0.159 mg of the title compound as a pale semisolid ($0.252 \mathrm{mmol}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 10.53$ (s, 1H), $8.63-8.49(\mathrm{~m}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 2 \mathrm{H})$, $7.52-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.06(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 4 \mathrm{H}), 3.59$ $(\mathrm{s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 3.26-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.29(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$) $\delta 172.9,172.3,171.3,171.1$, $169.0,158.4,149.0,136.8,136.7,134.4,128.9,123.0,122.4,119.0,59.4,57.8,51.8,47.6,47.5,40.20$, 38.2, 34.6, 30.6, 17.9, 16.8. HR-MS (ESI, pos. mode) $m / z 654.3011$ calculated for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{Na}$, found m/z 654.3026 .

Preparation of methyl (2-(4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenyl)acetyl)glycylglycinate (9).

To a flask containing HATU ($154.7 \mathrm{mg}, 0.407 \mathrm{mmol})$ and glycylglycine methyl ester hydrochloride (72.7 mg, 0.398 mmol), 2-(4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1 $\mathrm{H}-1,2,3$-triazol-1yl)phenyl)acetic acid ($2,0.3175 \mathrm{mmol}$) dissolved in 3 mL DMF, was added. The mixture was put in an ice bath under nitrogen, to which N-methylmorpholine $(0.10 \mathrm{~mL}, 0.91 \mathrm{mmol})$ was added. After stirring on ice bath for 30 min , the mixture was left at room temperature overnight. Volatile materials were removed under reduced pressure, and the crude product was loaded onto a plug of Bondesil $\mathrm{C}-18 \mathrm{OH}$ SPE material, and eluted portion-wise with methanol/water mixtures, with percentage of methanol increasing stepwise from 20% to 50%. Fractions containing crude product was collected and solvents evaporated to afford 158.5 mg pure title compound $(73.4 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.48$ $(\mathrm{s}, 1 \mathrm{H}), 8.44(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{~s}$, $2 \mathrm{H}), 3.94(\mathrm{~s}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- $\left.d_{4}\right) \delta 173.8$, $172.0,171.7,160.2,149.5,146.0,138.7,137.8,137.3,131.8,125.0,123.9,123.5,121.6,60.6,52.6$, 50.0, 43.4, 42.9, 41.8. MS (APCI, positive mode) $m / z 543.2[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, pos. mode) m / z 543.2463 calculated for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{O}_{4}$, found $m / z 543.2457$.

Preparation of methyl (2-(4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenyl)acetyl)-D-alanyl-D-alaninate (10).

To a flask containing the acid $2(0.3175 \mathrm{mmol})$, HATU ($122.9 \mathrm{mg}, 0.3232 \mathrm{mmol}$) and D-alanyl- D alanine methyl ester (174.8 mg as a 32.5% mixture with TFA, 0.326 mmol) dissolved in 3 mL DMF, was added. After cooling down in an ice bath under nitrogen, N-methylmorpholine ($0.15 \mathrm{~mL}, 1.4 \mathrm{mmol}$) was added, and the reaction mixture kept in an ice bath for 30 min , and thereafter stirred at room temperature for 4 h . Subsequent removal of volatiles under reduced pressure afforded a crude product which was purified by addition to a plug of Bondesil C-18 OH SPE material, eluted portion-wise with methanol/water mixtures ranging from 40% to 60% methanol content. Pure fractions was pooled and after removal of solvent, 91.4 mg product was obtained (50.4%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.77(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H})$, $4.40(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H})$, $1.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 174.8,174.5$, $173.0,160.2,149.5,146.0,138.7,138.0,137.2,131.7,125.0,123.9,123.5,121.5,60.6,52.7,50.3$ (x2), 50.0, 42.7, 18.1, 17.3. MS (APCI, positive mode) $m / z 571.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, pos. mode) m / z 571.2776 calculated for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{O}_{4}$, found $m / z 571.2771$.

Preparation of methyl 2-(2-(2-(4-(2-((2)-(bis(pyridin-2-
ylmethyl)amino)ethyl)(pyridin-2-
ylmethyl)amino)acetamido)phenyl)acetamido)acetamido)acetate (11).

3

11

Glycylglycine methyl ester hydrochloride ($37 \mathrm{mg}, 0.203 \mathrm{mmol}, 1$ eq.) was suspended in 3 mL ethanol at room temperature. To this suspension was added N-metylmorpholine ($49 \mu \mathrm{~L}, 2.2 \mathrm{eq}$.) and the mixture was stirred until all dissolved, followed by addition of 2-(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamido)phenyl)acetic acid (3, $106.7 \mathrm{mg}, 0.203$ $\mathrm{mmol}, 1 \mathrm{eq}$.) and $\mathrm{HOAt}\left(5.6 \mathrm{mg}, 0.2 \mathrm{eq}\right.$.). The mixture was cooled to $0^{\circ} \mathrm{C}$ in an ice bath, and $\mathrm{EDC} \cdot \mathrm{HCl}$ ($47 \mathrm{mg}, 0.244 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added in one portion. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then allowed to warm to room temperature and stirred for 16 h . The solvent was removed under reduced pressure, the residue dissolved in a minimum amount of $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed through a plug of neutral alumina using that eluent mixture. The product was isolated via column chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $1 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford $54.1 \mathrm{mg}(42 \%)$ of the product as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.96 (DMF), 7.63 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.46$ (m, 3H), 7.37 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18$ (t, J $=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.01(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.25\left(\mathrm{~s}, 0.19 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 3.91(\mathrm{dd}, J=8.9,5.5 \mathrm{~Hz}$, $4 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 3.27$ (s, 2H), 2.91 (DMF), 2.83 (DMF), 2.76 (t, $J=6.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.66(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.12$ (acetone). ${ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 171.93$, 170.13, $170.05,169.32,159.13,158.16,149.54,149.07,137.76,136.62,136.50,129.86,123.15,123.11$, $122.58,122.13,120.24,60.93,60.45,58.70,52.31,52.04,51.55,43.19,42.82,41.12$. HR-MS (APCI, pos. mode) m / z calc. for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{8} \mathrm{O}_{5}$: 653.3194, found $653.3193[\mathrm{M}+\mathrm{H}]^{+}$.

Preparation of (R)-methyl 2- $((R)-2-(2-(4-(2-((2-(b i s(p y r i d i n-2-$
ylmethyl)amino)ethyl)(pyridin-2-
ylmethyl)amino)acetamido)phenyl)acetamido)propanamido)propanoate (12).

2-(4-(2-((2-(Bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamido)phenyl)acetic acid ($\mathbf{3}, 97.1 \mathrm{mg}, 0.18 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 2 mL DMF at $0^{\circ} \mathrm{C}$. To this solution the D-Ala- $D-$ Ala-OMe $\cdot \mathrm{HCl}(41 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.05 \mathrm{eq}$.) was added, followed by HATU ($72 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.05$ eq.) and NMM (41μ l, 2.1 eq.). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then at room temperature for 16 h . The mixture was diluted with dest. $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc ($5 \times 20 \mathrm{~mL}$). The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The product was isolated via column chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $1-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford the product in 50 mg yield (40\%) as a yellow foam. ${ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform- d) $\delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58$ $-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.25\left(\mathrm{~s}, 0.02 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 4.55-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{~s}$, $3 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 173.13,171.82,171.13,170.11$, $159.16,158.19,149.60,149.13,137.87,136.66,136.54,129.83,129.80,123.21,123.17,122.62$, $122.18,120.23,61.01,60.50,58.73,52.49,52.07,51.59,48.84,48.18,43.11,18.28,18.06$. HR-MS (APCI, pos. mode) m / z calc. for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{8} \mathrm{O}_{5}: 681.3507$, found: $681.3501[\mathrm{M}+\mathrm{H}]^{+}$.

Preparation of (S)-methyl 2-((S)-2-(2-(4-(2-($(2-$ (bis(pyridin-2-
ylmethyl)amino)ethyl)(pyridin-2-
ylmethyl)amino)acetamido)phenyl)acetamido)propanamido)propanoate (13).

13

To a solution of L-Ala- L-Ala-OMe $\cdot \mathrm{HCl}(0.325 \mathrm{~g}, 1.54 \mathrm{mmol})$ in 5 mL DMF was added 2-(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamido)phenyl)acetic acid (3, $0.539 \mathrm{~g}, 1.02 \mathrm{mmol})$, HATU ($0.586 \mathrm{~g}, 1.54 \mathrm{mmol}$) and NMM ($0.25 \mathrm{~mL}, 2.3 \mathrm{mmol}$). The yellow solution was stirred at room temperature for 3 h . After diluting with dest. $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and $0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}(20$ mL), the aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The aqueous phase was diluted further with brine (50 mL) and extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organics were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and concentrated under reduced pressure. The product was isolated via column chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $1-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford the product in 130.5 mg yield (20%) as a pale yellow semi-solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, chloroform- d) $\delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 8.49$ (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.46 (ddd, $J=4.9,1.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.51$ (m, 3H), $7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.40(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , chloroform- d) $\delta 173.13,171.87,171.14,170.06,159.05,158.14,149.59,149.13,137.86,136.67$, $136.56,129.84,129.80,123.23,123.19,122.63,122.21,120.24,60.97,60.44,58.70,52.47,52.03$, $51.57,48.85,48.18,43.10,18.36,18.02$. HR-MS (APCI, neg. mode) m / z calc. for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{8} \mathrm{O}_{5}$: 679.3362 , found: $679.3342[\mathrm{M}-\mathrm{H}]$.

Preparation of methyl N-(2-(bis(pyridin-2-ylmethyl)amino)ethyl)- N -methylglycyl-D-alanyl-D-alaninate (14).

To a flask containing HATU ($250.9 \mathrm{mg}, 0.6599 \mathrm{mmol}$) and 2-((2-(bis(pyridin-2ylmethyl)amino)ethyl)(methyl)amino) acetic acid ($\mathbf{4}, 205.9 \mathrm{mg}, 0.6557 \mathrm{mmol}$), ${ }^{7}$ was added D-alanyl- D alanine methyl ester (352 mg as a 32.5% mixture with TFA, 0.657 mmol) dissolved in 5 mL DMF. The mixture was cooled down in an ice bath under nitrogen, and N-methylmorpholine ($0.35 \mathrm{~mL}, 3.2 \mathrm{mmol}$) was added. After stirring in an ice bath for 80 min , the mixture was kept in room temperature overnight, before volatiles were removed under reduced pressure. The product was purified with great difficulty after multiple passages through a plug of Bondesil C-18 OH SPE material, eluted portion-wise with methanol/water mixtures ranging from 20% to 50%. Removal of solvent under reduced pressure of fractions containing pure product afforded product as a pale yellow film ($43.8 \mathrm{mg}, 14.2 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.53(\mathrm{br} \mathrm{d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.63(\mathrm{dt}, J=1.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{dd}, J=$ $4.9 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ ($\mathrm{s}, 4 \mathrm{H}$), 3.93 (br m, 2H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 174.47,174.45,166.3,159.3$, $149.9,138.8,125.0,124.0,60.4,56.8,55.3,52.8,51.0,50.4,49.5,41.6,18.1,17.3$. MS (APCI, positive mode) $m / z 471.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, pos. mode) $m / z 471.2714$ calculated for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{4}$, found $m / z 471.2713$.

Preparation of 2-amino- N -(2-((4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenethyl)amino)-2-oxoethyl)acetamide (16).

tert-Butyl (2-((2-((4-(4-(bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-
yl)phenethyl)amino)-2-oxoethyl)amino)-2-oxoethyl)carbamate. To an ice-cooled flask under nitrogen, containing 2-(4-(4-(bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1amine ($\mathbf{6}, 198.1 \mathrm{mg}, 0.496 \mathrm{mmol}$), N-boc-glycylglycine ($115.4 \mathrm{mg}, 0.497 \mathrm{mmol}$) and HATU (191.4 $\mathrm{mg}, 0.503 \mathrm{mmol}$), dissolved in 3 mL DMF, N-methylmorpholine ($0.06 \mathrm{~mL}, 0.5 \mathrm{mmol}$) was added. After stirring for 30 min , the flask was left at room temperature and stirred for 2 days. Product was worked up and purified on Bondesil C18-OH SPE material, as described below for the corresponding D-alanyl- D-alanine derivative, to afford the title compound as a colourless oil/foam $(211.1 \mathrm{mg}$, 69.3%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.47$ (s, 1H), 8.44 (m, 2H), 7.80 (app. dt, $J=1.7 \mathrm{~Hz}, 7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.76$ (m, 2H), 7.71 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.87$ (s, 4H), $3.83(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
$\left(100 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta 173.2,171.7,160.2,158.8,149.5,146.0,141.7,138.7,136.9,131.3,125.0$, 123.9, 123.5, 121.6, 80.9, 60.6, 50.0, 45.0, 43.5, 41.8, 36.0, 28.7.

2-Amino-N-(2-((4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenethyl)amino)-2-oxoethyl)acetamide (16). The corresponding boc-protected material ($203.1 \mathrm{mg}, 0.331 \mathrm{mmol}$), described above, was dissolved in 15 mL dichloromethane, and cooled down in an ice bath under nitrogen. After addition of trifluoroacetic acid $(0.6 \mathrm{~mL}, 8 \mathrm{mmol})$, the mixture was stirred 30 min in an ice bath, and subsequently 4 h at room temperature. After removal of volatile materials under reduced pressure, the crude product was purified on a plug of strong cationic exchange SPE material, using 1:1 methanol/water and a pH -gradient from pH 3 to pH 10 with formic acid and ammonia as additives. Product eluted at pH 9 , and after removal of solvent and drying, the title compound was obtained as a colourless film (90.3 mg, 53.1\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~m}, 2 \mathrm{H})$, 7.82-7.74 (m, 4H), $7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 4 \mathrm{H})$, $3.85(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 175.7,171.7,160.2,149.5,146.0,141.7,138.7,136.9,131.3,125.0,123.9,123.5$, 121.6, 60.6, 49.9, 45.0, 43.3, 41.7, 36.0. MS (APCI, positive mode) $m / z 514.3[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{HR}-\mathrm{MS}$ (APCI, pos. mode) $m / z 514.2673$ calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{9} \mathrm{O}_{2}$, found $m / z 514.2674$.

Preparation of (R)-2-amino- $N-((R)-1-((4-(4-((b i s(p y r i d i n-2-$
ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenethyl)amino)-1-oxopropan-2yl)propanamide (17)

tert-Butyl ((R)-1-(((R)-1-((4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenethyl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)carbamate. To an ice-cooled flask under nitrogen, containing 2-(4-(4-(bis(pyridin-2-ylmethyl)amino)methyl)-1 H -1,2,3-triazol-1-yl)phenyl)ethan-1-amine ($6,95.4 \mathrm{mg}, 0.239 \mathrm{mmol}$), N-boc- D-alanyl- D-alanioic acid ($63.0 \mathrm{mg}, 0.242$ $\mathrm{mmol})$ and HATU ($91.9 \mathrm{mg}, 0.242 \mathrm{mmol}$), dissolved in 2 mL DMF, N-methylmorpholine (0.03 mL , 0.3 mmol) was added. After stirring for 30 min , the flask was left at room temperature overnight. Volatiles were removed under reduced pressure and the resulting material loaded onto a plug of Bondesil C-18 OH SPE material. The product was subsequently eluted out using portion-wise additions of methanol/water mixtures, ranging from 30% to 60% methanol. Pure fractions was collected and removal of solvent afforded the title compound as a colourless foam ($109.1 \mathrm{mg}, 71.1 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.87$ $(\mathrm{s}, 4 \mathrm{H}), 3.52(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{app} . \mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, methanol- d_{4}) $\delta 175.7,174.9,160.2,158.1,149.5,146.0,141.7,138.7,136.9,131.4,125.0$, $123.9,123.5,121.6,80.8,60.6,52.1,50.4,50.0,41.7,35.9,28.7,18.1,18.0$. MS (APCI, positive mode) $m / z 642.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, pos. mode) $m / z 642.3511$ calculated for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{9} \mathrm{O}_{4}$, found m / z 642.3512.

(R)-2-Amino-N-((R)-1-((4-(4-((bis (pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenethyl)amino)-1-oxopropan-2-yl)propanamide (17). tert-Butyl ((R)-1-(((R)-1-((4-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)phenethyl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)carbamate ($108.1 \mathrm{mg}, 0.1684 \mathrm{mmol}$) was dissolved in 5 mL dichloromethane, and cooled down in an ice bath under nitrogen. Trifluoroacetic acid ($0.3 \mathrm{~mL}, 4$ mmol) was added and the mixture was stirred 30 min on ice bath, and 150 min in room temperature afterwards. Attempts to isolate product as hydrochloride salt by precipitation from dichloromethane/diethyl ether mixture failed to give the desired purity, and the recovered product was instead purified on a plug of strong cationic exchange SPE material, using 1:1 methanol/water and a pH -gradient from pH 3 to pH 10 with formic acid and ammonia as additives. The product eluted at pH 9-10 and was obtained after removal of solvent under reduced pressure ($28.7 \mathrm{mg}, 31.5 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, methanol $\left.^{2} d_{4}\right) \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 4 \mathrm{H}), 3.69(\mathrm{q}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54-3.42(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) 1.31(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, methanol- d_{4}) $\delta 174.8,174.1,160.2,149.5,145.9,141.7,138.8,136.9,131.4,125.0,123.9$, $123.5,121.6,60.6,50.7,50.4,49.9,41.6,35.9,19.4,18.4$. MS (APCI, positive mode) $m / z 542.3$ $[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, pos. mode) $m / z 542.2986$ calculated for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{9} \mathrm{O}_{2}$, found $m / z 542.2982$.

Preparation of 2-amino- N -(2-(4-(2-($(2-$ (bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamido)phenethylamino)-2-oxoethyl)acetamide hydrochloride (18).

tert-Butyl 2-(2-(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamido)phenethylamino)-2-oxoethylamino)-2-oxoethylcarbamate. N-Bocglycylglycine ($108.3 \mathrm{mg}, 0.466 \mathrm{mmol}, 1.05 \mathrm{eq}$.) was slurried in $5 \mathrm{mLCH} \mathrm{CN}_{3} \mathrm{CN}$, cooled to $0^{\circ} \mathrm{C}$ in an ice bath. HATU (177 mg, $0.466 \mathrm{mmol}, 1.05 \mathrm{eq}$.$) , the N$-(4-(2-aminoethyl)phenyl)-2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamide hydrochloride ($7 \cdot \mathbf{H C l}, 242 \mathrm{mg}, 0.444$ mmol, 1.0 eq.) and NMM ($154 \mu \mathrm{~L}, 3.0$ eq.) were added. The resulting yellow solution was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 30 min and at room temperature for 16 h . The mixture was concentrated under reduced pressure and the residue was dissolved in a minimum amount of $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and passed through a plug of neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ eluting with $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was concentrated under reduced pressure and the product isolated via column chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $2-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford $151.6 \mathrm{mg}(47 \%)$ of the product as a yellow foamy solid. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.40(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 8 \mathrm{H}), 3.47(\mathrm{dd}, J=13.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 2 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 4 \mathrm{H}), 2.75-2.67(\mathrm{~m}$, $2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 170.3,168.8,159.1,158.2,149.7,149.2,137.0,136.7$, $136.6,134.4,129.3,123.3,123.2,122.7,122.3120 .5,80.6,61.0,60.5,58.8,52.2,51.7,43.3,40.8,35.1$, 28.5. HR-MS (APCI, pos. mode) m / z calc. for $\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{~N}_{9} \mathrm{O}_{5}$: 724.3929 , found $724.3925[\mathrm{M}+\mathrm{H}]^{+}$.

2-Amino-N-(2-(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-
ylmethyl)amino)acetamido)phenethylamino)-2-oxoethyl)acetamide hydrochloride (18). The N-boc protected amine described above ($82.9 \mathrm{mg}, 0.113 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in $5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ cooled to $0^{\circ} \mathrm{C}$ in an ice bath. A solution of TFA ($433 \mu \mathrm{~L}, 5.66 \mathrm{mmol}, 50 \mathrm{eq}$.) in $5 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$ was added dropwise at $0^{\circ} \mathrm{C}$ and the mixture allowed to warm to room temperature and stirred for 6 h . The volatiles were
removed under reduced pressure, the residue dissolved in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution ($3 \times 10 \mathrm{~mL}$). The organic phase was dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and concentrated under reduced pressure. The hydrochloric salt was prepared from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ solution by dropwise addition of 1 mL of HCl in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{M})$ to afford a yellow precipitate and the mixture was left in the fridge for 16 h . The precipitate was filtered off with suction, washed with $\mathrm{Et}_{2} \mathrm{O}$ and the sticky solid was dissolved in ethanol and concentrated under reduced pressure to afford $55.9 \mathrm{mg}(75 \%)$ of product as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.71(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 8.47(\mathrm{~m}, 3 \mathrm{H}), 8.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.93(\mathrm{~m}, 4 \mathrm{H}), 7.33(\mathrm{~s}, 4 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.68$ (q, ethanol), $3.52(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.21-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.09-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.21 (t, ethanol). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 171.5,170.4,168.3,152.9,152.7,147.9,146.4,143.3$, $142.1,137.5,135.1,130.3,127.7,127.3,127.1,126.8,122.2,58.1$ (ethanol), 57.4, 56.2, 52.8, 52.0, 43.0, 41.3, 41.1, 34.8, 17.5 (ethanol). ESI-HRMS m / z calc. for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{9} \mathrm{O}_{3}{ }^{+}: 624.3405$, found 624.3404.

Preparation of (R)-2-amino- $\mathrm{N}-((R)-1-(4-(2-((2-(b i s(p y r i d i n-2-$
ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamido)phenethylamino)-1-oxopropan-2-yl)propanamide hydrochloride (19).

7

(R)-1-((R)-1-(4-(2-((2-(bis(pyridin-2-ylmethyl) amino)ethyl)(pyridin-2-ylmethyl)amino)acetamido)phenethylamino)-1-oxopropan-2-ylamino)-1-oxopropan-2-
ylcarbamate. The amine ($7,70 \mathrm{mg}, 0.137 \mathrm{mmol}$) was dissolved in 1 mL DMF and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Boc-D-Ala-D-Ala-OH ($37 \mathrm{mg}, 0.142 \mathrm{mmol}$), HATU ($88 \mathrm{mg}, 0.231 \mathrm{mmol}$) and NMM ($20 \mu \mathrm{~L}$, 0.181 mmol) was then added and the mixture was stirred for 30 minutter in the ice bath and then at room temperature overnight. The mixture was then diluted in $200 \mathrm{~mL} 1 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with 1×30 mL and then $4 \times 20 \mathrm{~mL}$ EtOAc. The combined organic phases were pooled, dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and concentrated under reduced pressure. The crude material was then further purified using column chromatography on a netural $\mathrm{Al}_{2} \mathrm{O}_{3}$ colunm using $0-5 \% \mathrm{MeOH}$ in DCM as eluent. This afforded 55 $\mathrm{mg}(53 \%)$ of the title product. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, chloroform- d) $\delta 10.43(\mathrm{~s}, 1 \mathrm{H}), 8.56-8.42(\mathrm{~m}, 3 \mathrm{H})$, $7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.07(\mathrm{~m}, 6 \mathrm{H}), 6.76$ (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.53-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H})$, $2.84-2.67(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) 1.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz , chloroform- d) $\delta 172.6$, $172.0,169.9,159.0,158.1,155.9,149.6,149.2,137.0,136.7,136.6,134.3,129.2,123.3,123.2,122.7$, 122.2, 120.1, $80.5,61.0,60.4,58.7,52.1,51.6,50.7,49.1,41.0,35.2,28.4,18.3,18.2$. HR-MS: (TOF MS ESI, pos.mode): Calculated mass for $\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{~N}_{9} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 752.4242. Found: 752.4263.

(R)-2-Amino-N-((R)-1-(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamido)phenethylamino)-1-oxopropan-2-yl)propanamide hydrochloride (19). The N -boc protected amine ($64.8 \mathrm{mg}, 0.086 \mathrm{mmol}, 1 \mathrm{eq}$.$) , prepared as described above, was dissolved in 5$ $\mathrm{mLCH} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. A solution of TFA ($851 \mu \mathrm{~L}, 150 \mathrm{eq}$.) in $1 \mathrm{mLCH} \mathrm{Cl}_{2}$ was added dropwise over 10 min with a dropping funnel at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 3 h , then concentrated under reduced pressure. The crude residue was dissolved in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (10 mL), the organic phase dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and concentrated under reduced pressure. The hydrochloric salt was prepared from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution by dropwise addition of HCl in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{M})$ to afford a white precipitate and the mixture was left in the fridge for 16 h . The precipitate was filtered off with suction and the sticky solid was dissolved in ethanol and concentrated under reduced pressure to afford $31.6 \mathrm{mg}(53 \%)$ of product as a beige solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.70(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}), 8.46(\mathrm{q}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, 8.06 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.93 (m, 4H), 7.31 (s, 4H), $3.49-3.37$ (m, 1H), 4.37 (s, 2H), 4.34 ($\mathrm{s}, 4 \mathrm{H}), 4.25$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 1 \mathrm{H})$, $3.21-3.11(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.77(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.20 (ethanol). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 175.1,171.1,170.4,152.9,152.7,147.9,146.4$, $143.3,142.1,137.4,135.1,130.3,127.7,127.4,127.1,126.8,122.2,63.2$ (impurity), 58.14 (ethanol), $58.09,57.4,56.2,52.8,52.0,50.6,49.5,41.0,34.7,17.5$ (ethanol), 17.4, 17.1. HR-MS: (TOF MS, ESI pos. mode): Calculated mass for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 652.3723$. Found: 652.3727

Preparation of (S)-2-amino- $N-((S)-1-(4-(2-((2-$ (bis(pyridin-2-
ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamido)phenethylamino)-1-oxopropan-2-yl)propanamide hydrochloride (20)

7

(S)-1-((S)-1-(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-

EtOAc
$0^{\circ} \mathrm{C}-\mathrm{rt}$.
29\%

tert-Butyl ylmethyl)amino)acetamido)phenethylamino)-1-oxopropan-2-ylamino)-1-oxopropan-2-ylcarbamate. Boc-Ala-Ala-OH ($276 \mathrm{mg}, 0.52 \mathrm{mmol}, 1$ eq.) and HATU ($198 \mathrm{mg}, 0.52 \mathrm{mmol}, 1 \mathrm{eq}$.$) were suspended$ in 5 mL EtOAc and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To this mixture was added DIPEA $(272 \mu \mathrm{~L}, 1.56$ mmol, 3 eq.) and after 15 min the N-(4-(2-aminoethyl)phenyl)-2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)acetamide hydrochloride ($276 \mathrm{mg}, 0.52 \mathrm{mmol}, 1 \mathrm{eq}$.). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and at room temperature for 3 h . The mixture was then diluted with 20 mL EtOAc and washed with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution $(3 \times 20 \mathrm{~mL})$. The combined aq. phases were extracted with EtOAc $(20 \mathrm{~mL})$ and the combined organic phases dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The product was isolated via column chromatography on neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ using $1 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford $113.5 \mathrm{mg}(29 \%)$ of the product as a yellow oil that was taken directly to the deprotection step.

(S)-2-amino-N-((S)-1-(4-(2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-
ylmethyl)amino)acetamido)phenethylamino)-1-oxopropan-2-yl)propanamide hydrochloride (20). The N -boc protected amine prepared previously ($113.5 \mathrm{mg}, 0.151 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in 10 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. A solution of TFA ($1.73 \mathrm{~mL}, 150 \mathrm{eq}$.) in $5 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ was added dropwise over 10 min with a dropping funnel at $0^{\circ} \mathrm{C}$. The mixture was then allowed to slowly warm to room temperature and was stirred for 16 h and concentrated under reduced pressure. The crude residue was dissolved in $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (10 mL) and the organic phase dried over anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtered and concentrated under reduced pressure. The hydrochloric salt was prepared from $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ solution by dropwise addition of HCl in $\mathrm{Et}_{2} \mathrm{O}(2.0 \mathrm{M})$ to afford a white precipitate and the mixture was left in the fridge for 16 h . The precipitate was filtered off with suction and the sticky solid was dissolved in ethanol and concentrated under reduced pressure to afford $50.4 \mathrm{mg}(49 \%)$ of product as a beige solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.67(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 8.45-$ $8.40(\mathrm{~m}, 3 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~s}, 4 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 4 \mathrm{H}), 4.23$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}$, overlapping with ethanol), $3.56(\mathrm{dt}, J=14.0$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dt}, J=13.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{tq}, J=14.2,7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.52(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.19\left(\mathrm{t}\right.$, ethanol). ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 175.1$, $171.1,170.3,152.9,152.8,147.1,146.1,143.5,142.8,137.4,135.1,130.3,127.5,127.2,126.9,126.7$, 122.2, 58.1 (ethanol), 58.0, 57.4, 56.5, 52.7, 52.0, 50.6, 49.5, 41.1, 34.7, 17.5 (ethanol), 17.4, 17.2. HRMS (ESI, pos. mode) m / z calc. for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{9} \mathrm{O}_{3}{ }^{+}: 652.3718$, found 652.3700

Preparation of methyl bis(pyridin-2-ylmethyl)glycyl-D-alanyl-D-alaninate (33)

Methyl (2-chloroacetyl)-D-alanyl-D-alaninate (34). Chloromethyl acetic acid ($112 \mathrm{mg}, 1.19 \mathrm{mmol}$) was dissolved in DMF (3 mL) and cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath. D-alanyl- D-alanine methyl ester hydrochloride ($250 \mathrm{mg}, 1.19 \mathrm{mmol}$) and HATU ($452 \mathrm{mg}, 1.19 \mathrm{mmol}$) were then added before NMM ($288 \mu \mathrm{~L}, 2.62 \mathrm{mmol}$) was added to the stirring mixture. The mixture was left in the ice-water bath for 30 minutes before slowly heating to room temperature. The mixture was then left for 4 hours at room temperature. The mixture was then diluted with 300 mL water and extracted with $5 \times 30 \mathrm{~mL}$ EtOAc. The combined organic phases were pooled and washed with $0.5 \mathrm{M} \mathrm{NaHCO}_{3}(50 \mathrm{~mL}), 0.1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and brine (50 mL) before it was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was then purified by flash column chromatography using SiO_{2} as stationary phase and $50-100 \%$ EtOAc in heptane as eluent. This afforded 274 mg of the title compound as a white powder $(92 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 8.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.18$ (m, 2H), $4.09(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 0 \mathrm{H}), 2.50(\mathrm{~s}, 8 \mathrm{H}), 1.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO) $\delta 172.8,171.7,165.3,51.9,48.0,47.5,42.5,18.3$, 16.8. HR-MS (ESI, pos. mode) $m / z 273.0613$ calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$, found $m / z 273.0616$.

34

64\%

33

Methyl bis(pyridin-2-ylmethyl)glycyl-D-alanyl-D-alaninate (33). The α-chloro amide (34, $200 \mathrm{mg}, 0.80$ mmol, 1.0 eq.) and $\mathrm{KI}(80 \mathrm{mg}, 0.48 \mathrm{mmol}, 0.6 \mathrm{eq}$.) were dissolved in 200 mL MeCN and DPA ($173 \mu \mathrm{~L}$, $0.96 \mathrm{mmol}, 1.2$ eq.) was added to the stirring mixture. DIPEA ($1.35 \mathrm{~mL}, 7.74 \mathrm{mmol}, 9.7$ eq.) was then added and the mixture was heated to reflux and left for 16 hours. After cooling to room temperature, the mixture was concentrated under reduced pressure and purified using column chromatography. The product was eluted using $0-5 \% \mathrm{MeOH}$ in DCM from a neutral alumina column, giving 212 mg (64%). ${ }^{1} \mathrm{H}$ NMR (300 MHz , chloroform- d) $\delta 9.35$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $8.54(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.57-4.46(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.67$ (s, 3H), $3.38(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, chloroform- $d) \delta$

Preparation of methyl (2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-D-alanyl-D-alaninate (35).

Methyl (2-azidoacetyl)-D-alanyl-D-alaninate. 2-Azidoacetic acid (178 $\mu \mathrm{L}, 2,38 \mathrm{mmol}$) was dissolved in DMF (5 mL) and cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath. D-alanyl- D-alanine methyl ester hydrochloride $(500 \mathrm{mg}, 2,38 \mathrm{mmol})$ and HATU $(904 \mathrm{mg}, 2,38 \mathrm{mmol})$ were then added before NMM $(576 \mu \mathrm{~L}, 5,24$ mmol) was added to the stirring mixture. The mixture was left in the ice-water bath for 30 minutes before slowly heating to room temperature. The mixture was then left for 4 hours at room temperature. The mixture was then diluted with 350 mL water and extracted with $5 \times 50 \mathrm{~mL}$ EtOAc. The combined organic phases were pooled and washed with $0.5 \mathrm{M} \mathrm{NaHCO}_{3}(50 \mathrm{~mL}), 0.1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ before it was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was then purified by flash column chromatography using SiO_{2} as stationary phase and $50-100 \%$ EtOAc in heptane as eluent. This afforded 520 mg of the title compound as a white powder $(85 \%) .{ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 8.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{p}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{p}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- $_{6}$) $\delta 173.0,171.9,167.1,52.0,50.4,47.8,47.6,18.4,16.9$.

Methyl (2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-D-alanyl-Dalaninate (35). Copper acetate ($200 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $2.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and sodium-(+)ascorbate ($396 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0$ eq.) in $2.5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were added simultaneously to a stirring solution of the alkyne 22 ($237 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in $2.5 \mathrm{~mL} t \mathrm{BuOH}$. Methyl (2 -azidoacety))- D-alanyl- D-alaninate $(257 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq})$, prepared as described above, was then added and the solution was stirred at room temperature for 16 hours.

Work-up, alternative I: EDTA ($293 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added to the stirring solution and left for 60 minutes before the mixture was diluted with $50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and the pH of the mixture was adjusted to
>10 with 1 M NaOH . The slurry was then extracted with $2 \times 50 \mathrm{~mL}$ dichloromethane. The combined organic phases were dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$ and concentrated under reduced pressure to give a dark red oil. The crude products were purified using column chromatography by eluting a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ column with $0-5 \%$ methanol in dichloromethane to give 134 mg of the title compound as a pale orange oil (27%).
Work-up, alternative II: Chelex $100(5.0 \mathrm{~g})$ was added and the mixture stirred for 60 min . Filtration, followed by removal of solvent under reduced pressure, gave a crude product which was loaded onto a plug of Bondesil-C18 OH SPE material and purified by running through portions of methanol/water mixture, eluted stepwise from 25% to 50% methanol. To the first two portions, both at 25% methanol content, EDTA was added to the eluent. Fractions containing pure product was collected and the solvent removed under reduced pressure to provide 136 mg of a brown, amorphous solid $(22 \%$, starting from $1.24 \mathrm{mmol})$. Spectral data are reported for material purified in this manner.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.44(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}$, $2 \mathrm{H}), 4.36(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.9,171.8,165.0,159.0$, $148.8,143.1,136.5,125.3,122.5,122.1,58.7,51.8,51.4,48.0,47.9,47.5,18.3,16.8$. MS (APCI, pos. mode) $m / z 495.2[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI) $m / z 495.2463$ calculated for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{O}_{4}$, found m / z 495.2462.

Preparation of methyl (2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-L-alanyl-L-alaninate (36).

Methyl (2-azidoacetyl)-L-alanyl-L-alaninate. 2-Azidoacetic acid ($360 \mu \mathrm{~L}, 4.7 \mathrm{mmol}$) was dissolved in DMF (10 mL) and cooled to $0^{\circ} \mathrm{C}$ in an ice-water bath. Alanylalanine methyl ester hydrochloride (500 $\mathrm{mg}, 2.3 \mathrm{mmol})$ and HATU ($1.35 \mathrm{~g}, 3.6 \mathrm{mmol}$) were then added before NMM ($1.2 \mathrm{~mL}, 10.9 \mathrm{mmol}$) was added to the stirring mixture. The mixture was left in the ice-water bath for 30 minutes before slowly heating to room temperature. The mixture was allowed to stir overnight. The mixture was diluted in a mixture of brine (75 mL) and $0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq., 25 mL), and extracted with $4 \times 50 \mathrm{~mL} \mathrm{EtOAc}$. The combined organic phases were pooled and washed with $0.5 \mathrm{M} \mathrm{NaHCO}_{3}(50 \mathrm{~mL}), 0.1 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ before it was dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was then purified by flash column chromatography using silica as stationary phase and $50-75 \%$ EtOAc in heptane as eluent. This afforded 466 mg of the title compound $(79 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 172.9,171.8,166.9,51.9,50.5,47.8,47.5,18.3,16.8$. MS (ESI, pos. mode) $m / z 280.1[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI) $m / z 280.1016$ calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}$, found m / z 280.1017.

Methyl
(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-L-alanyl-L-
alaninate (36). Copper sulfate ($170 \mathrm{mg}, 1.05 \mathrm{mmol}$) in $2.5 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ was mixed with sodium-(+)ascorbate ($420 \mathrm{mg}, 2.1 \mathrm{mmol}$) and added to a stirring solution of the alkyne $22(250 \mathrm{mg}, 1.05 \mathrm{mmol})$ mixed with methyl (2-azidoacetyl)- L-alanyl- L-alaninate ($270 \mathrm{mg}, 1.05 \mathrm{mmol}$) in $2.5 \mathrm{~mL} t \mathrm{BuOH}$. The solution was stirred at room temperature for 18 hours.
Work-up, alternative I: EDTA was then added to the stirring solution and left for 60 minutes before the mixture was diluted with 10 mL brine, $10 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.) and approximately 3 mL 1 M NaOH (aq.) to bring pH to $10-11$. The product was extracted with $4 \times 20 \mathrm{~mL} 4: 1$ chloroform/isopropanol and washed with $0.5 \mathrm{M} \mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ before drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent under reduced
pressure gave a crude product which was purified using column chromatography by eluting a neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ column with $0-1 \%$ methanol in dichloromethane to give 195 mg of the title compound (38%). Work-up, alternative II: Chelex $100(3.0 \mathrm{~g})$ was added and the mixture stirred for 60 min . Filtration and subsequent removal of solvent under reduced pressure gave a crude product which was loaded onto a plug of Bondesil-C18 OH SPE material and purified by running through portions of methanol/water mixture, eluted stepwise from 20% to 60% methanol. To the first two portions, both at 20% methanol content, some EDTA buffered to pH 8 was added to the eluent. Fractions containing pure product was collected and the solvent removed under reduced pressure to provide 186 mg of a brown semisolid (36\%). Spectral data are reported for material purified in this manner.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.43(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24$ (m, 2H), 5.13 (s, $2 \mathrm{H}), 4.36(\mathrm{p}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{p}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 172.9,171.8,165.0,159.0$, $148.8,143.1,136.6,125.4,122.5,122.1,58.7,51.9,51.4,48.0,47.9,47.5,18.4,16.8$. MS (APCI, pos. mode) $m / z 495.2[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI) $m / z 495.2463$ calculated for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{O}_{4}$, found m / z 495.2464.

Preparation of methyl (2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)glycylglycinate (37).

Methyl (2-azidoacetyl)glycylglycinate. H-Gly-Gly-OMe hydrochloric salt ($744.2 \mathrm{mg}, 4.08 \mathrm{mmol}$), HATU $(1.55 \mathrm{~g}, 4.08 \mathrm{mmol})$ and 2 -azidoacetic acid $(0.33 \mathrm{~mL}, 4.4 \mathrm{mmol})$ was stirred in an ice bath with 4 mL dimethylformamide. N-Methylmorpholine was added ($0.90 \mathrm{~mL}, 8.2 \mathrm{mmol}$), and the reaction mixture was kept stirring in an ice bath for 2 h , after which the mixture was concentrated on a rotary evaporator. The residue was partitioned between 50 mL ethyl acetate and 30 mL sat. NaCl (aq.) and 20 $\mathrm{mL} 0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.). The phases were separated and the aqueous phase further extracted with 3×50 mL ethyl acetate. Combined organic phases were washed with 50 mL 0.1 M HCl (aq.) followed by 50 mL 0.5 M NaHCO 3 (aq.). After drying over MgSO_{4} (s.), filtration and removal of solvent under reduced pressure, the crude product was dissolved in a mixture of 80 mL ethyl acetate and $50 \mathrm{~mL} n$-heptane under gentle heating. Solvent was evaporated under reduced pressure until precipitation was initiated, after which the flask was left to cool. Precipitate was collected on suction, giving a colourless amorphous solid ($171.4 \mathrm{mg}, 18 \%$). Further material could be recovered by purification of the evaporated filtrate on a silica column, using a gradient of methanol ($4-5 \%$) in dichloromethane. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.36(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}$, 3 H). ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ 170.2, 169.1, 167.7, 51.7, 50.7, 41.7, 40.6. MS (ESI, pos. mode) $m / z 252.1[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI) $m / z 252.0703$ calculated for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}$, found m / z 252.0703.

22

37

Methyl (2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)glycylglycinate (37). A mixture of copper(II)sulfate ($41 \mathrm{mg}, 0.26 \mathrm{mmol}$) and sodium-(+)ascorbate ($110 \mathrm{mg}, 0.557 \mathrm{mmol}$) in
water (2 mL) was transferred to a flask containing N, N-bis(pyridin-2-ylmethyl)prop-2-yn-1-amine (22, $59 \mathrm{mg}, 0.25 \mathrm{mmol}$) dissolved in tert-butanol (2 mL). Under rapid stirring, the methyl (2azidoacetyl)glycylglycinate ($40 \mathrm{mg}, 0.17 \mathrm{mmol}$) from above was added, and the mixture kept under rapid stirring. After 3 h reaction time 0.75 g Chelex 100 was added and the mixture stirred for 30 min . Filtration and subsequent evaporation gave a crude product which was loaded onto a plug of BondesilC 18 OH SPE material and eluted by running through portions of methanol/water mixture, going stepwise from 20% to 50% methanol. To the first two portions, both at 20% methanol content, some EDTA buffered to pH 8 was added to the eluent. Fractions containing product was collected and the solvent removed under reduced pressure to provide a brown oil ($49.5 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.67(\mathrm{brt}, 1 \mathrm{H}), 8.49(\mathrm{~m}, 2 \mathrm{H}), 8.45(\mathrm{br}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{dt}, J=1.9 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.75(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 170.2,169.0,166.0,159.1$, $148.8,143.2,136.6,125.4,122.6,122.2,58.7,51.8,51.5,48.0,41.9,40.6$. MS (APCI, pos. mode) m / z $467.2[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI) $m / z 467.2150$ calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{8} \mathrm{O}_{4}$, found $m / z 467.2146$.

Preparation of methyl N^{2}-(D-alanyl)-N ${ }^{6}$-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)- D-lysinate (38).

Fmoc-D-Lys(H)-OMe hydrochloride salt. From Fmoc-D-Lys(Boc)-OH ($3.47 \mathrm{~g}, 7.41 \mathrm{mmol}$) dissolved in 35 mL methanol, thionyl chloride $(0.67 \mathrm{~mL}, 9.2 \mathrm{mmol})$ was added dropwise and the reaction mixture kept 30 min in an ice bath, followed by heating to $60^{\circ} \mathrm{C}$ for 2 h . After filtering the reaction mixture, product was precipitated by addition of diethyl ether and isolated as a colourless powder ($2.80 \mathrm{~g}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR data (400 MHz , DMSO- d_{6}) was in agreement with literature values for corresponding enantiomer. ${ }^{8}$

Fmoc-D-Lys(e-2-azidoacetyl)-OMe. Fmoc-D-Lys(H)-OMe hydrochloride salt (195 mg, 0.484 mmol), 2-azidoacetic acid ($0.050 \mathrm{~mL}, 0.67 \mathrm{mmol}$) and HATU ($185 \mathrm{mg}, 0.486 \mathrm{mmol}$) was stirred in 1.5 mL DMF and cooled in an ice bath. After addition of N-methylmorpholine ($0.11 \mathrm{~mL}, 0.997 \mathrm{mmol}$) the reaction was kept in an ice bath 140 min reaction time, after which the reaction was quenched by addition of 20 mL sat. NaCl (aq.) and $10 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$. (aq.). The product was extracted with $4 \times 20 \mathrm{~mL}$ ethyl acetate, washed with 20 mL 0.1 M HCl (aq.) and $20 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.). Drying over MgSO_{4} and subsequent filtration and removal of solvent under reduced pressure afforded a crude product which was further purified on a silica column using a $50 \%-75 \%$ gradient of ethyl acetate in n-heptane as eluent. The product was isolated as a clear oil $(199.7 \mathrm{mg}, 89 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform-d) $\delta 7.77$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{br}, 1 \mathrm{H}), 5.39(\mathrm{br}, 1 \mathrm{H}), 4.36-4.45(\mathrm{~m}$, $3 \mathrm{H}), 4.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.75(\mathrm{~m}$, $1 \mathrm{H}), 1.52-1.61(\mathrm{~m}, 2 \mathrm{H}) 1.34-1.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, chloroform- d) $\delta 173.0,167.0,156.2$, $143.9,141.5,127.9,127.2,125.2,120.2,67.2,53.7,52.8,52.7,47.3,39.2,32.4,28.9,22.5 . \mathrm{MS}$ (ESI, pos. mode) $m / z 488.2[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) $m / z 488.1904$ calculated for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}$, found $m / z 488.1903$.

Methyl $\quad N^{2}-((((9 H-f l u o r e n-9-y l) m e t h o x y)$ carbonyl)-D-alanyl)-N6$-(2-a z i d o a c e t y l)-D-l y s i n a t e . ~ T o ~ a ~$ solution of Fmoc-D-Lys(ε-2-azidoacetyl)-OMe (1.00 mmol) in acetonitrile (50 mL), piperidine (0.5 mL , 5 mmol) was added and stirred overnight. After filtration, volatiles were removed under reduced pressure. The crude product was loaded on a plug of silica, which was eluted portion-wise with pure dichloromethane, 1% methanol in dichloromethane and finally 90:10:1 dichloromethane / methanol / $25 \% \mathrm{NH}_{3}$ (aq.). Fractions containing product was evaporated and the product carried on to react with Fmoc-D-Ala-OH ($321 \mathrm{mg}, 1.03 \mathrm{mmol}$) using HATU ($411 \mathrm{mg}, 1.08 \mathrm{mmol}$) as coupling reagent in 5 mL DMF. The mixture was cooled on ice bath and N-methylmorpholine ($0.14 \mathrm{~mL}, 1.27 \mathrm{mmol}$) added. After being kept on ice bath for additional 30 min , the reaction was left to stir over-night. The reaction mixture was quenched by addition of 40 mL sat. NaCl (aq.) and $20 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$. (aq.), then the product was extracted with $4 \times 40 \mathrm{~mL}$ ethyl acetate, washed with 25 mL 0.1 M HCl (aq.) and $25 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.). The organic phase was dried over MgSO_{4} and after filtration, and removal of solvent under reduced pressure, a crude product was obtained which was further purified on a silica column using 75% ethyl acetate in n-heptane as eluent. The product was isolated as a colourless solid ($429.1 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) 7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.26(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.77$ $(\mathrm{s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 172.8,172.5,167,0,155.6,143.8,140.7,127.6,127.1$, $125.3,120.1,65.6,51.81,51.78,50.8,49.7,46.7,38.2,30.5,28.4,22.6,18.1$. MS (ESI, pos. mode) m / z $559.2[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) $m / z 559.2276$ calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Na}$, found m / z 559.2272.

Methyl
$N^{2}-((((9 H-f l u o r e n-9-y l) m e t h o x y)$ carbonyl)-D-alanyl)-N6-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-D-lysinate. A mixture of copper(II)sulfate (98.9 $\mathrm{mg}, 0.62 \mathrm{mmol})$ and sodium-(+)ascorbate $(250 \mathrm{mg}, 1.26 \mathrm{mmol})$ in water $(7.5 \mathrm{~mL})$ was transferred to a flask containing N, N-bis(pyridin-2-ylmethyl)prop-2-yn-1-amine (22, $151 \mathrm{mg}, 0.637 \mathrm{mmol}$) dissolved in tert-butanol (7.5 mL). Under rapid stirring, methyl $N^{2}-((((9 H$-fluoren-9-yl)methoxy)carbonyl)- D-alanyl)-N^{6}-(2-azidoacetyl)-D-lysinate ($288 \mathrm{mg}, 0.538 \mathrm{mmol}$), prepared above, was added and mixture was kept under rapid stirring for 3 h before dilution with ethyl acetate and transfer to a separatory funnel containing 60 mL water and 40 mL sat. NaCl (aq.). The product was extracted with 4 x 60 mL ethyl acetate, washed with $3 \times 70 \mathrm{~mL} 0.025 \mathrm{MEDTA} / 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.) and sat. NaCl (aq.). After drying over $\mathrm{K}_{2} \mathrm{CO}_{3}$, filtration and removal of solvent under reduced pressure, a crude product was obtained which was subsequently loaded onto an alumina column, washed with pure ethyl acetate before switching to 1.5% methanol in dichloromethane for elution of product. The product was isolated as a pale oil ($260.2 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.48(\mathrm{~m}, 2 \mathrm{H}), 8.28(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{dt}, J=1.8 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 5.06$ $(\mathrm{s}, 2 \mathrm{H}), 4.17-4.25(\mathrm{~m}, 4 \mathrm{H}), 4.09(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 172.9,172.6,165.3,159.1,155.7,148.8,143.8,143.1,140.7,136.6,127.7,127.1,125.4,125.3,122.6$, $122.2,120.1,65.7,58.7,51.88,51.85,51.6,49.7,48.0,46.7,38.6,30.5,28.4,22.7,18.1 . \mathrm{MS}$ (APCI, pos. mode) $m / z 774.4[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, pos. mode) $m / z 774.3722$ calculated for $\mathrm{C}_{42} \mathrm{H}_{48} \mathrm{~N}_{9} \mathrm{O}_{6}$, found $m / z 774.3721$.

Methyl $\quad N^{2}-(D-a l a n y l)-N^{6}-(2-(4-(($ bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-D-lysinate (38). The available methyl $N^{2}-\left(\left(\left(\left(9 H\right.\right.\right.\right.$-fluoren-9-yl)methoxy)carbonyl)-D-alanyl)- $N^{6}-(2-(4-$ ((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-D-lysinate (248 mg, 0.32 mmol) was split in two, and each part dissolved in 10 mL acetonitrile and treated with piperidine $(0.08 \mathrm{~mL}$, 0.81 mmol). After 1 h reaction time, the reaction mixtures was loaded onto a plug of alumina, and eluted portion-wise with increasing amounts of methanol ($0-10 \%$) in dichloromethane. After combining the reactions, the product was isolated after evaporation of solvent as an off-white foamy solid (113.6 mg , 64%). Some piperidine and dcm was present in the product as a minor impurities. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.48(\mathrm{~m}, 2 \mathrm{H}), 8.36(\mathrm{brt}, 1 \mathrm{H}), 8.30(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{dt}, J=1.8 \mathrm{~Hz}, 7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 5.74(\mathrm{dcm}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.72$ $(\mathrm{s}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~m}$, piperidine $), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}$, overlapping with piperidine), $1.54(\mathrm{~m}$, piperidine), $1.43(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 174.5,172.6,165.4,159.1,148.9,143.2,136.7,125.5,122.7,122.2$, 58.7, 52.0. 51.72, 51.66, 49.5, 48.1, 44.0 (piperidine), 38.6, 30.6, 28.5, 22.7, 22.6 (piperidine), 22.0 (piperidine), 20.4. MS (APCI, pos. mode) $m / z 552.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, pos. mode) $m / z 552.3041$ calculated for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{9} \mathrm{O}_{4}$, found $m / z 552.3033$.

Preparation of methyl (R)-2-((R)-2-acetamidopropanamido)-6-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1 H -1,2,3-triazol-1-yl)hexanoate (39).

Fmoc-D-Lys(N_{3})-OMe. Fmoc-D-Lys(H)-OMe hydrochloride salt (1.0116 g, 2.51 mmol), NaHCO_{3} ($743.1 \mathrm{mg}, 8.85 \mathrm{mmol}$) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(104.6 \mathrm{mg}, 0.419 \mathrm{mmol})$ was suspended in $4: 1$ methanol/water (10 mL). 1-(Azidosulfonyl)-1H-imidazol-3-ium tetrafluoroborate ($795.8 \mathrm{mg}, 3.05$ mmol) was added, giving evolution of gas. The reaction was stirred for 4.5 h , during which pH was adjusted by small additions of sat. NaHCO_{3} (aq.). After quenching the reaction by way of addition of 50 $\mathrm{mL} 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.) and $\mathrm{Na}_{2}\left(\mathrm{SO}_{4}\right)$ (s.), the product was extracted with $3 \times 100 \mathrm{~mL}$ ethyl acetate. After washing twice with sat. NaCl (aq.) and drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (s.), the solution was filtered and the solvent removed under reduced pressure. The product was isolated in quantitative yield as a pale yellow oil and used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.77(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{br} \mathrm{d}, 2 \mathrm{H}), 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 4.37-4.43(\mathrm{~m}, 3 \mathrm{H}), 4.23(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H})$.

H-D-Lys $\left(N_{3}\right)$-OMe. To a solution of Fmoc-D-Lys $\left(\mathrm{N}_{3}\right)$-OMe (2.51 mmol) in 100 mL acetonitrile, piperidine ($5 \mathrm{~mL}, 50 \mathrm{mmol}$) was added and the mixture stirred at room temperature for 2 h . After evaporation of solvent, the product was purified by repeated loading onto a silica plug, and elution portion-wise with increasing amounts of methanol $(0.5 \%-10 \%)$ in dichloromethane. The product was isolated as an oil ($348.9 \mathrm{mg}, 75 \%$) and carried along directly to the next step.

Methyl $N^{2}-\left(\right.$ acetyl-D-alanyl)- N^{6}-diazo-D-lysinate. $\mathrm{H}-\mathrm{D}-\mathrm{Lys}\left(\mathrm{N}_{3}\right)$-OMe (349 mg, 1.88 mmol$)$ and Ac-D-Ala-OH ($248 \mathrm{mg}, 1.89 \mathrm{mmol}$) and HATU ($723 \mathrm{mg}, 1.90 \mathrm{mmol}$) was stirred in 6 mL DMF and cooled in an ice bath. After addition of N-methylmorpholine $(0.23 \mathrm{~mL}, 2.1 \mathrm{mmol})$, the reaction was kept 30 min on ice bath and thereafter left to stir overnight at room temperature. After quenching the reaction mixture with 40 mL sat. NaCl (aq.) and $20 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$. (aq.), the product was extracted with $4 \times 40 \mathrm{~mL}$ ethyl acetate, washed with 20 mL 0.1 M HCl (aq.) and $20 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.). The organic phase was dried over MgSO_{4} and after filtration and removal of solvent under reduced pressure a crude product was obtained which was further purified on a silica column using 8% methanol in dichloromethane as eluent. The product was obtained after removal of solvent under reduced pressure ($438.5 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.20(\mathrm{brd}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31\left(\mathrm{dq}, J_{1}=J_{2}\right.$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~m}$, $1 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.7$, $172.4,168.9,51.8,51.7,50.5,47.7,30.3,27.8,22.6,22.4,18.1$. MS (ESI, pos. mode) $m / z 322.1$ $[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) $m / z 322.1486$ calculated for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}$, found $m / z 322.1489$.

Methyl (R)-2-((R)-2-acetamidopropanamido)-6-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)hexanoate (39). A mixture of copper(II)sulfate ($266 \mathrm{mg}, 1.67 \mathrm{mmol}$) and sodium-(+)ascorbate ($682 \mathrm{mg}, 3.44 \mathrm{mmol}$) in water $(15 \mathrm{~mL})$ was transferred to a flask containing N, N-bis(pyridin-2-ylmethyl)prop-2-yn-1-amine (22, $424 \mathrm{mg}, 1.79 \mathrm{mmol}$) dissolved in tert-butanol (15 mL). Under rapid stirring, methyl N^{2}-(acetyl- D-alanyl)- N^{6}-diazo- D-lysinate ($427 \mathrm{mg}, 1.43 \mathrm{mmol}$), prepared as described above, was added and the mixture kept under rapid stirring for 5 h before dilution with ethyl acetate, water and sat. NaCl (aq.). Extraction with ethyl acetate was attempted, with only low yields. The product could only be extracted with ethyl acetate after addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and EDTA to the aqueous phase. After removal of solvent under reduced pressure, a crude product was obtained which was subsequently loaded onto an alumina column, and eluted with 1% methanol in dichloromethane, giving a moderately pure product ($245.6 \mathrm{mg}, 32 \%$). An aliquot was purified on reversed-phase preparative HPLC, using $65: 35$ water/methanol containing 0.5% trifluoroacetic acid as eluent on a YMC Triart C18 column. After
removal of eluent, the aqueous phase was made basic with sat. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) and extracted with ethyl acetate. Subsequent washing with sat. NaCl (aq.) and drying over $\mathrm{K}_{2} \mathrm{CO}_{3}$, afforded a pure product after removal of solvent under reduced pressure. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.48(\mathrm{~m}, 2 \mathrm{H}), 8.20(\mathrm{br} \mathrm{d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{br} \mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{td}, J=1.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.34(\mathrm{~m}, 3 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.59-$ $1.81(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 172.7,172.4$, $168.9,159.1,148.8,143.4,136.5,123.6,122.5,122.1,58.9,51.8,51.6,49.0,48.3,47.8,30.1,29.2,22.4$, 22.3, 18.1. MS (APCI, pos. mode) $m / z 537.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, pos. mode) $m / z 537.2932$ calculated for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{4}$, found $m / z 537.2928$.

Preparation of methyl N^{2}-acetyl- N^{6}-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-L-lysylglycinate (40).

Methyl N^{2}-acetyl- N^{6}-(tert-butoxycarbonyl)-L-lysylglycinate. To an ice-cooled flask under nitrogen, containing glycine methyl ester hydrochloride $(250.9 \mathrm{mg}, 2.00 \mathrm{mmol})$, ($($)-2-acetamido-6-((tertbutoxycarbonyl)aminohexanoic acid ($593.5 \mathrm{mg}, 2.06 \mathrm{mmol}$) and HATU ($772.0 \mathrm{mg}, 2.03 \mathrm{mmol}$), suspended in 5 mL DMF, N-methylmorpholine ($0.50 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added. The mixture was kept on ice bath for 30 min , and subsequently stirred overnight at room temperature. After removal of volatiles under reduced pressure, the mixture was transferred to a separatory funnel using 15 mL 0.5 M $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) and 30 mL saturated NaCl (aq.). The product was extracted using $4 \times 30 \mathrm{~mL}$ ethyl acetate. The combined organic phase was washed with 25 mL 0.1 M HCl (aq.) and $25 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.), and then dried over MgSO_{4}. Evaporation of solvent gave a crude product which was recrystallised from a mixture of 30 mL ethyl acetate and $20 \mathrm{~mL} n$-heptane to provide the title compound as a colourless solid ($435.4 \mathrm{mg}, 60.6 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 4.34(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.98 (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.89 (d, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 3.04 (app. t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.99 (s, 3H), 1.82 $(\mathrm{m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 13 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 175.0,173.4,171.6$, 158.6, 79.9, 54.6, 52.6, 41.8, 41.1, 32.8, 30.6, 28.8, 24.0, 22.4. MS (ESI, positive mode) $m / z 382.2$ $[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) $m / z 382.1949$ calculated for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}$, found m / z 382.1949.

Methyl acetyl-L-lysylglycinate. A solution of methyl N^{2}-acetyl- N^{6}-(tert-butoxycarbonyl)-Llysylglycinate ($426.3 \mathrm{mg}, 1.187 \mathrm{mmol}$) in 20 mL dichloromethane was kept in an ice bath while trifluoroacetic acid (5 mL , diluted with 5 mL dichloromethane) was added over a period of 1 h . The mixture was stirred on ice bath for additional 100 min , after which the volatile materials were removed three times, with addition of 20 mL toluene ahead of each removal. This gave 608 mg of a crude material, for which full conversion and recovery was assumed, corresponding to 50.6 mass percentage of desired product. Excess mass was assumed to be mainly trifluoroacetic acid and this crude was employed directly in the next step, using additional equivalents of base to correct for this.

Methyl N^{2}-acetyl- N^{6}-(2-azidoacetyl)-L-lysylglycinate. Methyl acetyl-L-lysylglycinate (1.187 mmol), available as a 50.6 mass percent mixture with trifluoroacetic acid, as described above, was dissolved in 5 mL DMF. HATU ($452.9 \mathrm{mg}, 1.191 \mathrm{mmol}$) was added, and the mixture was subsequently cooled down in an ice bath under nitrogen. After addition of 2 -azidoacetic acid ($0.13 \mathrm{~mL}, 1.7 \mathrm{mmol}$), N methylmorpholine was added $(0.45 \mathrm{~mL}, 4.1 \mathrm{mmol})$, giving a yellow solution. The mixture was stirred 30 min on the ice bath, and then 4 h in room temperature. After transferal to a separatory funnel, using $15 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) and 25 mL saturated NaCl (aq.), attempts were made to extract the product with $4 \times 25 \mathrm{~mL}$ ethyl acetate, albeit with poor recovery. Better results were obtained with $3 \times 20 \mathrm{~mL} 4: 1$ mixture of chloroform and isopropanol. After drying all extracts over MgSO_{4} (s) and subsequent filtration, they were combined and, after removal of solvents under reduced pressure, purified on a silica column eluted with 10% methanol in dichloromethane. Fractions containing pure product were combined, and solvents were removed under reduced pressure to give the title compound as a colourless solid (129.5 mg, 31.9\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 4.34(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}$, $J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{app} . \mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.99$ $(\mathrm{s}, 3 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- $\left.d_{4}\right)$ $\delta 174.9,173.4,171.6,170.1,54.6,53.0,52.6,41.8,40.1,32.7,30.0,24.0,22.4$. MS (ESI, positive mode) $m / z 365.2[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) $m / z 365.1544$ calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}$, found m / z 365.1545 .

Methyl $\quad N^{2}$-acetyl-N6-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-Llysylglycinate (40). A mixture of copper(II)sulfate ($73.5 \mathrm{mg}, 0.461 \mathrm{mmol}$) and sodium-(+) ascorbate (182
$\mathrm{mg}, 0.919 \mathrm{mmol})$ in water (3 mL) was transferred to a flask containing N, N-bis(pyridin-2-ylmethyl)prop-2-yn-1-amine ($\mathbf{2 2}, 108.8 \mathrm{mg}, 0.4591 \mathrm{mmol}$) dissolved in tert-butanol (3 mL). This mixture was then transferred to a flask containing methyl N^{2}-acetyl- N^{6}-(2-azidoacetyl)-L-lysylglycinate (123.7 mg , 0.3617 mmol). Transfer was aided by rinsing out the flask with additional $2 \mathrm{~mL} 1: 1$ tert-butanol and water. The reaction mixture was stirred rapidly for 3 h , after which Chelex $100(1.4 \mathrm{~g})$ was added. Stirring was continued for 1 h , during which the reaction mixture went from green to red. Filtration and subsequent evaporation gave a crude product which was loaded onto a plug of Bondesil-C18 OH SPE material and eluted by running through portions of methanol/water mixture, going stepwise from 30\% to 60% methanol. To the first two portions, both at 30% methanol concentration, some EDTA buffered to pH 8 was added to the eluent. Fractions containing product was collected and the solvent removed under reduced pressure to provide the title compound as a reddish brown oil ($99.0 \mathrm{mg}, 47.2 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{methanol}^{2} d_{4}\right) \delta 8.44(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}$, 2H), 5.14 (s, 2H), $4.34(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.82$ $(\mathrm{s}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 1.6 \mathrm{H}$ (loss of signal due to transesterification with the NMR solvent)), 3.25 (app. $\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 174.9,173.4,171.7,167.8,160.2,149.5,145.4,138.7,126.9,124.9,123.8,60.3,54.6$, $53.1,52.6,49.9,41.8,40.3,32.6,29.9,23.9,22.5$. MS (APCI, pos. mode) $m / z 580.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI) $m / z 580.2990$ calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{9} \mathrm{O}_{5}$, found $m / z 580.2988$.

Preparation of methyl N^{2}-acetyl- N^{6}-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-L-lysyl-D-alaninate (41).

Methyl N^{2}-acetyl- N^{6}-(tert-butoxycarbonyl)-L-lysyl-D-alaninate. To an ice-cooled flask under nitrogen, containing D-alanine methyl ester hydrochloride ($280.1 \mathrm{mg}, 2.01 \mathrm{mmol}$), (S)-2-acetamido-6-((tertbutoxycarbonyl)aminohexanoic acid ($598.9 \mathrm{mg}, 2.08 \mathrm{mmol}$) and HATU ($765.2 \mathrm{mg}, 2.01 \mathrm{mmol}$), suspended in 5 mL DMF, N-methylmorpholine ($0.50 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added. The mixture was kept on ice bath for 30 min , and subsequently stirred overnight at room temperature. After removal of volatiles under reduced pressure, the mixture was transferred to a separatory funnel using 15 mL 0.5 M $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) and 30 mL saturated NaCl (aq.). The product was extracted using $4 \times 30 \mathrm{~mL}$ ethyl acetate. The combined organic phase was washed with 25 mL 0.1 M HCl (aq.) and $25 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.), and then dried over MgSO_{4}. Evaporation of solvent gave a crude colorless solid which was attempted recrystallized from a mixture of 20 mL ethyl acetate and $20 \mathrm{~mL} n$-heptane. A polymorphous precipitate was formed. Some nice looking crystals were recovered, and the mixture was reheated and redissolved, with the addition of a few more mL of ethyl acetate. The mixture was then slowly cooled down with steady addition of seeding crystals. The desired product was isolated by way of suction filtration as a colourless solid ($313.8 \mathrm{mg}, 41.8 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 4.39(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$ (dd, $J=8.3 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (s, 3H), 3.03 (app. t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.99 (s, 3 H), 1.76 (m, 1H), 1.64 $(\mathrm{m}, 1 \mathrm{H}), 1.51-1.35(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol $-d_{4}$) $\delta 174.4,174.1,173.2,158.6,79.9$, $54.5,52.7,49.5,41.1,32.9,30.6,28.8,24.0,22.5,17.5$. MS (ESI, positive mode) $m / z 396.2[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) $m / z 396.2105$ calculated for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}$, found $m / z 396.2105$.

Methyl acetyl-L-lysyl-D-alaninate. A solution of methyl N^{2}-acetyl- N^{6}-(tert-butoxycarbonyl)-L-lysyl-Dalaninate ($308.2 \mathrm{mg}, 0.826 \mathrm{mmol}$) in 20 mL dichloromethane was kept in an ice bath while trifluoroacetic acid (5 mL , diluted with 5 mL dichloromethane) was added over a period of 45 min . The mixture was stirred on ice bath for additional 15 min , after which TLC indicated full conversion. The
volatile materials were removed under reduced pressure three times, with addition of 20 mL toluene ahead of each removal. This gave 427 mg of a crude material, for which full conversion and recovery was assumed, corresponding to 52.8 mass percentage of desired product. As for the corresponding glycinate compound, excess mass was assumed to be mainly trifluoroacetic acid and the crude was employed directly in the next step, using additional equivalents of base to correct for this.

Methyl N^{2}-acetyl- $N^{6}-(2-a z i d o a c e t y l)-L-l y s y l-D-a l a n i n a t e . ~ M e t h y l ~ a c e t y l-L-l y s y l-D-a l a n i n a t e ~(0.826 ~$ mmol), prepared as a mixture with trifluoroacetic acid as described above, was dissolved in 4 mL DMF. HATU ($351.0 \mathrm{mg}, 0.923 \mathrm{mmol}$) was added, and the mixture was subsequently cooled down in an ice bath under nitrogen. After addition of 2 -azidoacetic acid $(0.10 \mathrm{~mL}, 1.3 \mathrm{mmol}), N$-methylmorpholine was added ($0.32 \mathrm{~mL}, 2.9 \mathrm{mmol}$). After removal of the ice bath, the mixture was stirred overnight at room temperature. The mixture was transferred to a separatory funnel, using $10 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) and 20 mL saturated NaCl (aq.), and extracted with $4 \times 20 \mathrm{~mL} \mathrm{4:1} \mathrm{mixture} \mathrm{of} \mathrm{chloroform} \mathrm{and} \mathrm{isopropanol}$. After drying over $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtration, and removal of solvents under reduced pressure, the crude product was purified on a silica column eluted with 7% methanol in dichloromethane. Fractions containing pure product were combined, and solvents removed under reduced pressure to give the title compound as a colourless film which could be scraped to a colourless solid ($225.8 \mathrm{mg}, 76.7 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta 4.39(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.71$ (s, 3H), 3.22 (app. t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.32$ (m, 5H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 174.4,174.1,173.3,170.1,54.5,53.0,52.7,49.5,40.1$, 32.8, 30.0, 24.0, 22.5, 17.4. MS (ESI, positive mode) $m / z 379.2[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) m / z 379.1700 calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}$, found $m / z 379.1701$.

Methyl $\quad N^{2}$-acetyl- $N^{6}-(2-(4-((b i s(p y r i d i n-2-y l m e t h y l) a m i n o) m e t h y l)-1 H-1,2,3-t r i a z o l-1-y l) a c e t y l)-L-$ lysyl-D-alaninate (41). A rapidly prepared mixture of copper(II)sulfate ($127.5 \mathrm{mg}, 0.799 \mathrm{mmol}$) and sodium ascorbate $(319.8 \mathrm{mg}, 1.615 \mathrm{mmol})$ in water $(5 \mathrm{~mL})$ was transferred to a flask containing $N, N-$ bis(pyridin-2-ylmethyl)prop-2-yn-1-amine (22, $190.3 \mathrm{mg}, 0.803 \mathrm{mmol}$) dissolved in tert-butanol (5 $\mathrm{mL})$. This mixture was then transferred to a separate flask containing methyl N^{2}-acetyl- N^{6}-(2-azidoacetyl)-L-lysyl- D-alaninate ($218.3 \mathrm{mg}, 0.613 \mathrm{mmol}$), prepared as described above. Transfer was completed by rinsing out the flask with additional $4 \mathrm{~mL} 1: 1$ tert-butanol and water. The reaction mixture was stirred vigorously for 3 h . Chelex $100(2.5 \mathrm{~g})$ was then added and stirring was continued for 1 h . Filtration and subsequent removal of solvents gave a crude product which was loaded onto a plug of Bondesil-C18 OH SPE material and eluted by running through portions of methanol/water mixture, going stepwise from 30% to 50% methanol. To the first two portions, both at 30% methanol concentration, some EDTA buffered to pH 8 was added to the eluent to aid removal of remaining traces of copper. Fractions containing product was collected, discarding some of the more strongly coloured fractions, and the solvent was removed under reduced pressure to provide the title compound as a brown film which could be scraped to a powder $(162.3 \mathrm{mg}, 44.6 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.44(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~s}$, $1 \mathrm{H}), 7.80(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J$ $=8.3 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.23($ app. $, ~ J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H})$, $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- $\left.d_{4}\right) \delta$ 174.4, $174.1,173.3,167.8,160.2,149.5,145.4,138.7,126.9,124.9,123.8,60.3,54.5,53.1,52.7,49.9,49.5$, 40.3, 32.8, 29.9, 24.0, 22.5, 17.4. MS (APCI, pos. mode) $m / z 594.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI) m / z 594.3147 calculated for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{9} \mathrm{O}_{5}$, found $m / z 594.3144$.

Preparation of methyl N^{6}-acetyl- N^{2}-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-L-lysylglycinate (42).

Methyl N^{6}-acetyl- $N^{2}-($ tert-butoxycarbonyl)-L-lysylglycinate. To an ice-cooled flask under nitrogen, containing glycine methyl ester hydrochloride $(258.5 \mathrm{mg}, 2.06 \mathrm{mmol})$, (S)-6-acetamido-2-((tertbutoxycarbonyl)aminohexanoic acid ($593.3 \mathrm{mg}, 2.06 \mathrm{mmol}$) and HATU ($759.9 \mathrm{mg}, 2.00 \mathrm{mmol}$), suspended in 5 mL DMF, N-methylmorpholine $(0.50 \mathrm{~mL}, 4.5 \mathrm{mmol})$ was added. The mixture was kept on ice bath for 30 min , and subsequently stirred overnight at room temperature. After removal of volatiles under reduced pressure, the mixture was transferred to a separatory funnel using 15 mL 0.5 M $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) and 30 mL saturated NaCl (aq.). The product was extracted using $4 \times 30 \mathrm{~mL}$ ethyl acetate. The combined organic phase was washed with 25 mL 0.1 M HCl (aq.) and $25 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.), and then dried over MgSO_{4}. Evaporation of solvent gave a crude product which was purified on a silica column, eluted with 6% methanol in dichloromethane as the eluent. Fractions containing pure product was collected and solvent removed under reduced pressure to give 397.7 mg of the title compound (55.3\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, methanol- d_{4}) $\delta 4.06-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 3.17 (app. $\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}$, $11 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 175.7,173.2,171.6,157.9,80.6,55.9,52.6,41.8,40.2,33.0$, 30.0, 28.7, 24.1, 22.6. MS (ESI, positive mode) $m / z 382.2[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) m / z 382.1949 calculated for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}$, found $m / z 382.1950$.

Methyl N^{6}-acetyl-L-lysylglycinate. To a solution of methyl N^{6}-acetyl- N^{2}-(tert-butoxycarbonyl)-Llysylglycinate ($391.2 \mathrm{mg}, 1.090 \mathrm{mmol}$) in 20 mL dichloromethane cooled down in an ice bath, trifluoroacetic acid (5 mL , diluted with 5 mL dichloromethane) was added over a period of 1 h . The mixture was kept stirring on the ice bath for additional 3 h . TLC indicated full conversion at this point. The volatile materials were removed under reduced pressure three times, with addition of 20 mL toluene
ahead of each removal. This gave 554 mg of a crude material, for which full conversion and recovery was assumed, corresponding to 51.0 mass percentage of desired product. Excess mass was assumed to be mainly trifluoroacetic acid and the crude was employed directly in the next step, using additional equivalents of base to correct for this.

Methyl N^{6}-acetyl- N^{2}-(2-azidoacetyl)-L-lysylglycinate. Methyl N^{6}-acetyl-L-lysylglycinate (1.090 mmol), prepared as a mixture with trifluoroacetic acid in the manner as described above, was dissolved in 5 mL DMF. HATU ($416.1 \mathrm{mg}, 1.094 \mathrm{mmol}$) was added, and the mixture was cooled down in an ice bath under nitrogen. After addition of 2-azidoacetic acid $(0.12 \mathrm{~mL}, 1.6 \mathrm{mmol})$, followed by N-methylmorpholine $(0.40 \mathrm{~mL}, 3.6 \mathrm{mmol})$, the mixture was stirred 30 min on the ice bath, giving a yellow solution. Stirring was continued at room temperature for 3.5 h . The mixture was transferred to a separatory funnel, using a mixture of $0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) and saturated NaCl (aq.), and extracted with $4 \times 20 \mathrm{~mL} 4: 1$ mixture of chloroform and isopropanol. After drying over $\mathrm{MgSO}_{4}(\mathrm{~s})$, filtration, and removal of solvents under reduced pressure, the crude product was purified on a silica column eluted with 7% methanol in dichloromethane. Fractions containing pure product were pooled, and solvents removed under reduced pressure to give the title compound as a colourless solid ($304.4 \mathrm{mg}, 81.6 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.m^{m e t h a n o l}-d_{4}\right) \delta 4.40(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.90(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.17($ app. $\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.70$ $(\mathrm{m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 174.5,173.3,171.6,170.2$, $54.5,52.7,52.6,41.8,40.2,32.8,29.9,24.0,22.6$. MS (ESI, positive mode) $m / z 365.2[\mathrm{M}+\mathrm{Na}]^{+}$, HRMS (ESI, pos. mode) $m / z 365.1544$ calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}$, found $m / z 365.1546$.

Methyl $\quad N^{6}$-acetyl- $N^{2}-(2-(4-((b i s(p y r i d i n-2-y l m e t h y l) a m i n o) m e t h y l)-1 H-1,2,3-t r i a z o l-1-y l) a c e t y l)-L-~$ lysylglycinate (42). A mixture of copper(II)sulfate ($185.1 \mathrm{mg}, 1.16 \mathrm{mmol}$) and sodium-(+)ascorbate $(458.9 \mathrm{mg}, 2.32 \mathrm{mmol})$ in water $(6 \mathrm{~mL})$ was transferred to a flask containing N, N-bis $($ pyridin-2-ylmethyl)prop-2-yn-1-amine (22, $273.8 \mathrm{mg}, 1.155 \mathrm{mmol}$) dissolved in tert-butanol (6 mL). This mixture was then transferred to a flask containing the methyl N^{6}-acetyl- N^{2}-(2-azidoacetyl)- L-lysylglycinate ($297.3 \mathrm{mg}, 0.869 \mathrm{mmol}$) from above. Transfer was completed by rinsing out the flask with additional 4 $\mathrm{mL} 1: 1$ tert-butanol and water. The reaction mixture was stirred rapidly for 3 h , after which Chelex 100 $(3.0 \mathrm{~g})$ was added. Stirring was continued for 1 h . Filtration and subsequent evaporation gave a crude product which was loaded onto a plug of Bondesil-C18 OH SPE material and eluted by running through portions of methanol/water mixture, going stepwise from 30% to 50% methanol. To the first two portions, both at 30% methanol concentration, some EDTA buffered to pH 8 was added to the eluent. Fractions containing product was collected and the solvent removed under reduced pressure to provide the title compound as a reddish brown oil $(205.3 \mathrm{mg}, 40.8 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.43$ $(\mathrm{m}, 2 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{app} \mathrm{dt}, J=1.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 2.2 \mathrm{H}$ (probably reduced due to transesterification with the NMR solvent)), 3.17 (app. t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 174.4,173.3,171.6,167.8,160.2,149.5,145.4,138.7,127.0$, $124.9,123.8,60.4,54.7,52.9,52.6,49.9,41.8,40.2,32.8,30.0,23.9,22.6$. MS (APCI, pos. mode) m / z $580.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI) $m / z 580.2990$ calculated for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{9} \mathrm{O}_{5}$, found m / z 580.2990.

Preparation of methyl N^{6}-acetyl- N^{2}-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-L-lysyl-D-alaninate (43).

Methyl N^{6}-acetyl- N^{2}-(tert-butoxycarbonyl)-L-lysyl-D-alaninate. To an ice-cooled flask under nitrogen, containing D-alanine methyl ester hydrochloride $(283.3 \mathrm{mg}, 2.03 \mathrm{mmol}),(S)-6$-acetamido-2-((tertbutoxycarbonyl)aminohexanoic acid ($581.0 \mathrm{mg}, 2.01 \mathrm{mmol}$) and HATU ($769.0 \mathrm{mg}, 2.02 \mathrm{mmol}$), suspended in 5 mL DMF, N-methylmorpholine ($0.50 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added. The mixture was kept on ice bath for 30 min , and subsequently stirred overnight at room temperature. After removal of volatiles under reduced pressure, the mixture was transferred to a separatory funnel using 15 mL 0.5 M $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) and 30 mL saturated NaCl (aq.). The product was extracted using $4 \times 30 \mathrm{~mL}$ ethyl acetate. The combined organic phase was washed with 25 mL 0.1 M HCl (aq.) and $25 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.), and then dried over MgSO_{4}. Evaporation of solvent gave the crude as a colourless oil. Recrystalisation from ethyl acetate $/ n$-heptane mixtures failed, and the product was instead purified on a silica column, gradient eluted with $3-7 \%$ methanol in dichloromethane. Fractions containing pure product was combined and solvent evaporated under reduced pressure to provide the title compound as a colourless viscous oil ($385.4 \mathrm{mg}, 51.3 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 4.40(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (br t, $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.16$ (app. t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.46-1.34(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 175.0,174.4,173.2,157.8,80.7,55.9,52.7$, 49.5, 40.2, 33.1, 30.0, 28.7, 24.2, 22.6, 17.5. MS (ESI, positive mode) $\mathrm{m} / \mathrm{z} 396.2$ [M+Na] ${ }^{+}$, HR-MS (ESI, pos. mode) $m / z 396.2105$ calculated for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Na}$, found $m / z 396.2106$.

Methyl N^{6}-acetyl-L-lysyl-D-alaninate. A solution of methyl N^{6}-acetyl- N^{2}-(tert-butoxycarbonyl)-L-lysyl-D-alaninate ($376.0 \mathrm{mg}, 1.008 \mathrm{mmol}$) in 20 mL dichloromethane was kept in an ice bath while trifluoroacetic acid (5 mL , diluted with 5 mL dichloromethane) was added over a period of 1 h . The
mixture was stirred on ice bath for additional 1 h , after which TLC indicated full conversion. The volatile materials were removed under reduced pressure three times, with addition of 20 mL toluene ahead of each removal. This gave 525 mg of a crude material, for which full conversion and recovery was assumed, corresponding to 52.4 mass percentage of desired product. Excess mass was assumed to be mainly trifluoroacetic acid and the crude was employed directly in the next step, using additional equivalents of base to correct for this.

Methyl N^{6}-acetyl- N^{2}-(2-azidoacetyl)-L-lysyl-D-alaninate. Methyl N^{6}-acetyl- L-lysyl- D-alaninate (1.008 mmol), prepared as a mixture with trifluoroacetic acid as described above, was dissolved in 5 mL DMF. HATU ($382.7 \mathrm{mg}, 1.006 \mathrm{mmol}$) was added, and the mixture was subsequently cooled down in an ice bath under nitrogen. After addition of 2 -azidoacetic acid $(0.11 \mathrm{~mL}, 1.5 \mathrm{mmol}), N$-methylmorpholine was added ($0.37 \mathrm{~mL}, 3.4 \mathrm{mmol}$). The mixture was subsequently stirred on ice bath for additional 4 h . The mixture was transferred to a separatory funnel, using $10 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) and 10 mL saturated NaCl (aq.), and extracted with $4 \times 20 \mathrm{~mL} 4: 1$ mixture of chloroform and isopropanol. After drying over MgSO_{4} (s), filtration, and removal of solvents under reduced pressure, the crude product was purified on a silica column eluted with 7% methanol in dichloromethane. Fractions containing pure product were combined, and solvents removed under reduced pressure to give the title compound as a colourless solid (306.8 mg, 85.6\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz, methanol- d_{4}) $\delta 4.43-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{app} . \mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.45-$ $1.33(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, methanol- $\left.d_{4}\right) \delta 174.4,173.7,173.2,170.1,54.4,52.8$ (two exact overlapping signals), 49.6, 40.2, 33.0, 30.0, 24.0, 22.6, 17.4. MS (ESI, positive mode) $\mathrm{m} / \mathrm{z} 379.2$ $[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) $m / z 379.1700$ calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}$, found $m / z 379.1700$.

Methyl $\quad N^{6}$-acetyl- $N^{2}-(2-(4-((b i s(p y r i d i n-2-y l m e t h y l) a m i n o) m e t h y l)-1 H-1,2,3-t r i a z o l-1-y l) a c e t y l)-L-$ lysyl-D-alaninate (43). A rapidly prepared mixture of copper(II)sulfate ($175.2 \mathrm{mg}, 1.098 \mathrm{mmol}$) and sodium- $(+$)ascorbate $(438.8 \mathrm{mg}, 2.216 \mathrm{mmol})$ in water $(6 \mathrm{~mL})$ was transferred to a flask containing $N, N-$ bis(pyridin-2-ylmethyl)prop-2-yn-1-amine (22, $263.6 \mathrm{mg}, 1.112 \mathrm{mmol}$) dissolved in tert-butanol (6 mL). This mixture was then transferred to a separate flask containing methyl N^{6}-acetyl- N^{2}-(2-azidoacetyl)-L-lysyl- D-alaninate ($300.1 \mathrm{mg}, 0.843 \mathrm{mmol}$). Transfer was completed by rinsing out the flask with additional $4 \mathrm{~mL} \mathrm{1:1}$ tert-butanol and water. The reaction mixture was stirred vigorously for 3 h . Chelex $100(3.0 \mathrm{~g})$ was then added and stirring was continued for 1 h . Filtration and subsequent removal of solvents gave a crude product which was loaded onto a plug of Bondesil- C 18 OH SPE material and eluted by running through portions of methanol/water mixture, going stepwise from 30% to 50% methanol. To the first two portions, both at 30% methanol concentration, some EDTA buffered to pH 8 was added to the eluent to aid removal of remaining traces of copper. Fractions containing product was collected, discarding some of the more strongly coloured fractions, and the solvent was removed under reduced pressure to provide the title compound as a reddish brown film, which could be scraped to a powder ($219.4 \mathrm{mg}, 43.8 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.44(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{app}$. $\mathrm{dt}, J=1.8 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.36$ $(\mathrm{m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 4 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{app} . \mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- $\left.d_{4}\right) \delta 174.4,173.6$, $173.2,167.7,160.2,149.5,145.4,138.7,127.0,124.9,123.8,60.4,54.6,53.0,52.8,49.9,49.5,40.1$, 33.0, 30.0, 24.0, 22.6, 17.4. MS (APCI, pos. mode) $m / z 594.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, positive mode) $m / z 594.3147$ calculated for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{9} \mathrm{O}_{5}$, found $m / z 594.3146$.

Preparation of (S)-((6-Acetamido-2-(2-(4-((bis(pyridin-2-
ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-
yl)acetamido)hexanamido)methyl)boronic acid (44).

H-D-Lys(Ac)-OMe hydrochloric salt. Boc-Lys(Ac)-OH (1.01 g, 3. 50 mmol$)$ was dissolved in methanol and thionyl chloride $(0.32 \mathrm{~mL}, 4.4 \mathrm{mmol})$ added dropwise while the reaction mixture was cooled in an ice bath. After 30 min additional cooling, the mixture was heated to $60^{\circ} \mathrm{C}$ for 2 h . Evaporation of volatiles afforded the product as an oil in quantitative yield. ${ }^{1} \mathrm{H}$ NMR data (400 MHz , DMSO- d_{6}) was in reasonable agreement with literature values for corresponding trifluoroacetate salt in methanol- $d_{4} \cdot{ }^{9}$

Methyl N^{6}-acetyl- N^{2}-(2-azidoacetyl)-L-lysinate (46). H-D-Lys(Ac)-OMe hydrochloric salt (3.50 mmol), 2-azidoacetic acid ($0.3 \mathrm{~mL}, 4.0 \mathrm{mmol}$) and HATU ($1.35 \mathrm{~g}, 3.55 \mathrm{mmol}$) was stirred in 8 mL DMF and cooled in an ice bath. After addition of N-methylmorpholine ($1.15 \mathrm{~mL}, 10.4 \mathrm{mmol}$), the reaction was kept 30 min on ice bath and thereafter left to stir at room temperature. After 4 h reaction time, the reaction was quenched by addition of 40 mL sat. NaCl (aq.) and $20 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$. (aq.). The product was extracted with $4 \times 50 \mathrm{~mL}$ ethyl acetate, washed with 35 mL 0.1 M HCl (aq.) and 35 mL 0.5 M NaHCO_{3} (aq.). Drying over MgSO_{4} and subsequent filtration and removal of solvent under reduced pressure afforded a crude product which was further purified on a silica column using 5% methanol in dichloromethane as eluent. The product was isolated as a semisolid ($370.7 \mathrm{mg}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.48(\mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 172.2,169.0,167.6,52.0,51.9,50.4,38.2,30.5,28.6,22.7$,
22.6. MS (ESI, pos. mode) $m / z 308.1[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) $\mathrm{m} / \mathrm{z} 308.1329$ calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}$, found $m / z 308.1328$.

Methyl $\quad N^{6}$-acetyl- $N^{2}-(2-(4-((b i s(p y r i d i n-2-y l m e t h y l) a m i n o) m e t h y l)-1 H-1,2,3-t r i a z o l-1-y l) a c e t y l)-L-$ lysinate (48). A mixture of copper(II)sulfate ($247 \mathrm{mg}, 1.55 \mathrm{mmol}$) and sodium-(+)-ascorbate (615 mg , $3.11 \mathrm{mmol})$ in water $(10 \mathrm{~mL})$ was transferred to a flask containing N, N-bis(pyridin-2-ylmethyl)prop-2-yn-1-amine ($22,368 \mathrm{mg}, 1.55 \mathrm{mmol}$) dissolved in tert-butanol $(10 \mathrm{~mL})$. Under rapid stirring, methyl N^{6} -acetyl- N^{2}-(2-azidoacetyl)-L-lysinate $(46,369 \mathrm{mg}, 1.29 \mathrm{mmol})$ was added and the mixture kept under rapid stirring for 4.5 h before dilution with ethyl acetate and transfer to a separatory funnel containing a mixture of 0.5 g EDTA, sat. NaCl (aq.), sat. $\mathrm{K}_{2} \mathrm{CO}_{3}$ (aq.) to pH 10 and water. The product was extracted using $4 \times 50 \mathrm{~mL}$ ethyl acetate, washed with $0.5 \mathrm{M} \mathrm{NaHCO}_{3}$ (aq.) containing a pinch of EDTA and sat. NaCl (aq.). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtration and removal of solvent under reduced pressure, a crude product was obtained which was subsequently loaded onto an alumina column, and eluted with a gradient of methanol ($0.5 \%-1.5 \%$) in dichloromethane. Only moderately pure product was achieved at this stage ($180.3 \mathrm{mg}, 27 \%$).

(S)-((6-Acetamido-2-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1$y l)$ acetamido)hexanamido)methyl)boronic acid (44). Methyl N^{6}-acetyl- N^{2}-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1 $H-1,2,3$-triazol-1-yl)acetyl)-L-lysinate ($48,0.35 \mathrm{mmol}$) was dissolved in a $1: 1$ mixture of tetrahydrofuran and water $(10 \mathrm{~mL})$. Lithium hydroxide monohydrate was added $(60 \mathrm{mg}$,
1.4 mmol) and the reaction mixture was stirred overnight. After neutralization with 0.5 M HCl , solvents were removed under reduced pressure, and the crude hydrolyzed product carried along and mixed with bis-trimethylsilyl-aminomethaneboronate pinacol ester ($125 \mathrm{mg}, 0.415 \mathrm{mmol}$) and HATU (162 mg , 0.425 mmol) in 2 mL DMF. The mixture was cooled in an ice bath, N-methylmorpholine ($0.12 \mathrm{~mL}, 1.1$ $\mathrm{mmol})$ added, followed by water $(0.05 \mathrm{~mL}, 2.8 \mathrm{mmol})$. The mixture was allowed to stir further 30 min on ice bath, before being left at room temperature overnight. For work-up, the solvent was removed under reduced pressure and the crude product loaded onto a plug of Bondesil-C18 OH SPE material. The product was isolated by portion-wise elution using methanol/water-mixtures going stepwise from 10% to 60% methanol. Fractions containing product was pooled and the solvent removed under reduced pressure to afford the product as a "glass-like" pale yellow film ($103.9 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.45-8.49(\mathrm{~m}, 3 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.79(\mathrm{~m}, 5 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{br} \mathrm{t}$, $1 \mathrm{H}), 7.25(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H})$, $1.77(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 171.0,169.0,165.3,159.0,148.8,143.1,136.6,125.3,122.6,122.1,58.7,52.7,51.5,48.0,38.4,32.0$, 28.9, 26.5, 22.7, 22.6. Direct observation of the carbon α to boron $\left(\delta_{\mathrm{C}} 26.5\right)$ was not possible due to the quadrupolar relaxation exerted on this carbon by the boron atom. Likewise, the resonance was missing in HMBC experiments, probably due to the long delays necessary in the pulse sequence. However, the resonance was observable in HSQC experiments, and reported as such. MS (APCI, negative mode) m / z $520\left[\mathrm{M}-\mathrm{H}^{+}-\mathrm{HBO}_{2}\right]^{-}$.

Preparation of (S)-((2-Acetamido-6-(2-(4-((bis(pyridin-2-
ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-
yl)acetamido)hexanamido)methyl)boronic acid (45).

Ac-D-Lys(H)-OMe hydrochloric salt. Ac-D-Lys(Boc)-OH (1.02 g, 3. 53 mmol) was dissolved in methanol and thionyl chloride $(0.32 \mathrm{~mL}, 4.4 \mathrm{mmol})$ added dropwise while the reaction mixture was cooled in an ice bath. After 30 min additional cooling, the mixture was heated to $60{ }^{\circ} \mathrm{C}$ for 2 h . Evaporation of volatiles afforded the product as an oil in quantitative yield. ${ }^{1} \mathrm{H}$ NMR data (400 MHz , DMSO- d_{6}) was in agreement with published values, except for a probably misprinted value of 2.27 ppm for $\mathrm{H}-6$, for which 2.72 ppm was observed. ${ }^{10}$

Methyl N^{2}-acetyl- $N^{6}-(2$-azidoacetyl)-L-lysinate (47). The title compound was prepared from Ac-D-Lys(H)-OMe hydrochloric salt (3.53 mmol) and 2-azidoacetic acid following the exact same procedure as for the synthesis of methyl N^{6}-acetyl- $N^{2}-(2$-azidoacetyl)- L-lysinate (46). The product was isolated as a colourless semisolid ($338.3 \mathrm{mg}, 34 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.20(\mathrm{br} \mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $8.06(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.69$ $(\mathrm{m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right) \delta 172.8,169.5,167.1,54.9,51.9$, 51.7, 50.8, 38.4, 30.6, 28.5, 22.7, 22.2. MS (ESI, pos. mode) $m / z 308.1[\mathrm{M}+\mathrm{Na}]^{+}$, HR-MS (ESI, pos. mode) $m / z 308.1329$ calculated for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{Na}$, found m / z 308.1327.

47

Methyl $\quad N^{2}$-acetyl-N ${ }^{6}-(2-(4-((b i s(p y r i d i n-2-y l m e t h y l) a m i n o) m e t h y l)-1 H-1,2,3-t r i a z o l-1-y l) a c e t y l)-L-~$ lysinate (49). A mixture of copper(II)sulfate ($240 \mathrm{mg}, 1.50 \mathrm{mmol}$) and sodium-(+)-ascorbate (597 mg , $3.02 \mathrm{mmol})$ in water (10 mL) was transferred to a flask containing N, N-bis(pyridin-2-ylmethyl)prop-2-yn-1-amine (22, $357 \mathrm{mg}, 1.50 \mathrm{mmol}$) dissolved in tert-butanol (10 mL). Under rapid stirring, methyl $\mathrm{N}^{2}-$ acetyl- N^{6}-(2-azidoacetyl)-L-lysinate $(47,338 \mathrm{mg}, 1.24 \mathrm{mmol})$ was added and the mixture kept under rapid stirring for 3 h before dilution with ethyl acetate, water and sat. NaCl (aq.). After dilution, extraction was attempted, resulting in a poor recovery. The product could only be extracted with ethyl acetate after addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and EDTA to the aqueous phase. The extract was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{~s})$. Filtration and subsequent removal of solvent under reduced pressure gave a crude product, which was purified on an alumina column, using a gradient of methanol (2-3\%) in dichloromethane as eluent. Product could not be isolated more than moderately pure at this stage ($189.7 \mathrm{mg}, 29 \%$).

(S)-((2-Acetamido-6-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-
yl)acetamido)hexanamido)methyl)boronic acid (45). Hydrolysis and subsequent coupling to bis-trimethylsilyl-aminomethaneboronate pinacol ester was performed from methyl N^{2}-acetyl- N^{6}-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-L-lysinate (49) in a similar manner as for the regiosiomer methyl N^{6}-acetyl- N^{2}-(2-(4-((bis(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)acetyl)-L-lysinate (48), starting from 0.36 mmol ester. The crude product was loaded
onto a plug of Bondesil-C18 OH SPE material and isolated by portion-wise elution using methanol/water-mixtures going stepwise from 20% to 50% methanol. Fractions containing product was collected and solvent removed under reduced pressure to afford the product as a "glass-like" pale yellow film (44.9 mg, 22\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 8.49(\mathrm{~m}, 2 \mathrm{H}), 8.29$ (br m, 1H), 8.04 (s, 1H), 7.97 (br d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dt}, J=1.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.38 (br m, 1H), $7.25(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 4 \mathrm{H}), 3.06(\mathrm{~m}, 2 \mathrm{H}), 2.53$ (m, signal partly obscured under solvent peak), $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 171.7,169.5,165.3,159.1,148.8,143.1,136.6,125.4,122.6$, $122.2,58.7,52.7,51.6,48.0,38.7,31.6,28.7,26.3,22.9,22.6$. See note under compound 44 regarding the carbon α to the boron atom ($\delta_{\mathrm{C}} 26.3$). MS (APCI, negative mode) $m / z 520\left[\mathrm{M}-\mathrm{H}^{+}-\mathrm{HBO}_{2}\right]^{-}$.

Preparation of 2-((2-(bis(pyridin-2-ylmethyl)amino)ethyl)(methyl)amino)-N-methyl-N-((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxyhexyl)acetamide (50).

To a flask containing N-methyl- D-glucamine ($219.4 \mathrm{mg}, 1.12 \mathrm{mmol}$), EDC hydrochloride (289.6 mg , 1.51 mmol) and 1-hydroxy-7-azabenzotriazole $(203.0 \mathrm{mg}, 1.49 \mathrm{mmol})$, a solution of 2-($(2$-(bis(pyridin-2-ylmethyl)amino)ethyl)(methyl)amino) acetic acid (4, 0.748 mmol) in 5 mL DMF was added, followed by N-methylmorpholine ($0.20 \mathrm{~mL}, 1.8 \mathrm{mmol}$). The mixture was then heated to $50{ }^{\circ} \mathrm{C}$ overnight. After removal of solvent under reduced pressure, the crude product was initially purified by loading onto a plug of Bondesil C18-OH SPE material, and eluted portion-wise with pure water followed with increasing amounts of methanol up to 50%. Evaporation of solvent from fractions containing product gave an impure material, which was further purified in aliquots on a plug of strong cationic exchange SPE material, using $1: 1$ methanol/water and a pH -gradient from pH 3 to pH 10 with formic acid and ammonia as additives. The total amount of product isolated, as a pale yellow oil, was $158.8 \mathrm{mg}(43.2 \%)$. The NMR spectra had a very complex appearance in the aliphatic region, probably caused by s-cis/trans isomerism over the amide bond. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.48(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{dt}, J=1.8 \mathrm{~Hz}$, $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~m}, 4 \mathrm{H}), 3.60-3.20(\mathrm{~m}, 13 \mathrm{H}), 3.19-3.16(\mathrm{~m}$, $2 \mathrm{H}), 3.11(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1.3 \mathrm{H}), 2.76(\mathrm{~s}, 1.7 \mathrm{H}), 2.57(\mathrm{~m}, 3 \mathrm{H}), 2.10(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 170.0,159.4,159.3,148.7,136.5,122.7,122.1,72.4,71.9,71.5,71.4,71.2,70.4,69.8$, $69.4,63.33,63.27,60.1,59.83,59.79,59.7,54.7,51.8,51.2,51.1,50.9,48.6,42.2,36.3,33.3$. MS (APCI, positive mode) $m / z 492.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (APCI, pos. mode) $m / z 492.2817$ calculated for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{6}$, found $m / z 492.2814$.

Preparation of $(3 R, 4 S, 5 R, 6 R)-6-((4-(C(2-(B i s(p y r i d i n-2-$
ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)methyl)tetrahydro-2H-pyran-2,3,4,5-tetraol (51, mixture of $2 R / S$ anomers).

(1-(((3aR,5R,5aS,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl methanesulfonate. 6-Deoxy-6-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]-1,2:3,4-bis-O-(1-methylethylidene)- $\alpha-D$-galactopyranose ($246.3 \mathrm{mg}, 0.722 \mathrm{mmol}$), available from the Huisgen azide-alkyne cycloaddition of 6 -azido-6-deoxy-1,2:3,4-di-O-isopropylidene- $\alpha-D$-galactose with propargyl alcohol, ${ }^{11}$ was converted to its corresponding mesylate by dropwise addition of methanesulfonylchloride ($0.07 \mathrm{~mL}, 0.9 \mathrm{mmol}$) to an ice-cooled solution of the sugar in 5 mL dichloromethane and $0.15 \mathrm{~mL}(1.1 \mathrm{mmol})$ triethylamine. After addition, the reaction mixture was allowed to stir at room temperature for 1 h , and subsequently added to a plug of silica. The product was eluted with ethyl acetate and solvent was removed under reduced pressure to give the product in quantitative yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, dichloromethane- $\left.d_{2}\right) \delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=5.0$, $1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 4.68-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=9.0,14.3,1 \mathrm{H}), 4.34(\mathrm{dd}, J=2.6,5.0,1 \mathrm{H}), 4.24(\mathrm{dd}$, $J=1.9,7.9,1 \mathrm{H}), 4.17(\mathrm{ddd}, J=1.9,3.6,9.0,1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$, $1.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , dichloromethane- d_{2}) $\delta 131.5,126.3,110.5,109.5,96.8,71.7,71.4$, 70.9, 67.7, 63.6, 51.3, 39.3, 26.3, 26.2, 25.2, 24.7.

N^{l}, N^{l}, N^{2}-tris(pyridin-2-ylmethyl)- $N^{2}-((1-(((3 a R, 5 R, 5 a S, 8 a S, 8 b R)-2,2,7,7-t e t r a m e t h y l t e t r a h y d r o-5 H-$ bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)ethane-1,2-diamine. To an ice-cold solution of N^{1}, N^{1}, N^{2}-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (28, $241.2 \mathrm{mg}, 0.723$ mmol) in 10 mL acetonitrile under nitrogen, potassium carbonate ($208 \mathrm{mg}, 1.50 \mathrm{mmol}$) was added. A
solution of the mesylate from the previous step $(0.722 \mathrm{mmol})$ in 5 mL acetonitrile was added dropwise. After the addition, the ice bath was removed and the reaction allowed to proceed overnight. The reaction mixture was then filtered through a plug of celite, and after removal of solvent under reduced pressure, purified by way of flash chromatography on an alumina column, using a gradient of $1.0 \%-1.5 \%$ methanol in dichloromethane as eluent. After removal of solvent from fractions containing the desired product, further purification was achieved by loading onto a plug of Bondesil C18-OH SPE material. Elution in steps from 30% to 70% methanol in water yielded several fractions pure in product, which after evaporation gave 93.8 mg product $(19.8 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , methanol- d_{4}) $\delta 8.42-8.37(\mathrm{~m}, 3 \mathrm{H})$, $7.90(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H})$, $5.41(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{dd}, J=2.5 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=3.2 \mathrm{~Hz}, 14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (dd, $J=9.3 \mathrm{~Hz}, 14.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=2.5 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=1.9 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (ddd, $J=1.9 \mathrm{~Hz}, 3.1 \mathrm{~Hz}, 9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H})$, $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , methanol- d_{4}) $\delta 160.68,160.67,149.39,149.37,145.3$, $138.64,138.60,126.0,124.9,124.8,123.73,123.69,110.9,110.0,97.7,72.6,72.2,71.8,68.8,61.5$, $60.8,53.4,52.7,51.8,50.2,26.3,26.2,25.1,24.6$. MS (APCI, positive mode) $\mathrm{m} / \mathrm{z} 657.4[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{HR}-$ MS (APCI, pos. mode) $m / z 657.3507$ calculated for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{8} \mathrm{O}_{5}$, found $m / z 657.3505$.

(3R,4S,5R,6R)-6-((4-(((2-(Bis(pyridin-2-ylmethyl)amino)ethyl)(pyridin-2-ylmethyl)amino)methyl)-1H-1,2,3-triazol-1-yl)methyl)tetrahydro-2H-pyran-2,3,4,5-tetraol (51, mixture of $2 R / 2 S$ anomers). From the doubly isopropylidene protected sugar ($92.8 \mathrm{mg}, 0.141 \mathrm{mmol}$), the deprotected product was obtained by stirring in a mixture of 15 mL trifluoroacetic acid and 10 mL water for 4 h . Volatiles were removed after repeated additions of 10 mL toluene followed by evaporation on a rotary evaporator. In order to remove traces of unreacted starting material, the crude product was loaded onto a small plug of C18 SPE material and eluted with an 80:20 water/methanol mixture. After another removal of solvent, further purification was achieved by loading onto a plug of strong cationic exchange SPE material, using 1:1 methanol/water and a pH-gradient from pH 3 to pH 10 with formic acid and ammonia as additives. Fractions containing
pure product by TLC was collected and the solvent removed under reduced pressure to afford the title compound as a yellow film, which could be scraped from the flask surface as a powder ($65.7 \mathrm{mg}, 80.8 \%$). The NMR spectra have a very complex appearance overall due to presence of α and β anomers, and also additional unreported minor peaks, likely from furanose forms. For δ_{H} between 5 and 3 ppm , only shifts for the main peaks, as observed in the multiplicity edited HSQC spectrum, are reported. Negative peaks are indicated as "methylene". ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.51-8.42(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{~s}, 0.5 \mathrm{H}), 7.91$ (s, 0.5H), 7.79-7.66 (m, 3H), 7.46 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.80-$ $6.55(\mathrm{~m}, 0.51 \mathrm{H}, \mathrm{OH}), 6.45-6.17(\mathrm{~m}, 0.68 \mathrm{H}, \mathrm{OH}), 6.45-6.17(\mathrm{~m}, 0.68 \mathrm{H}, \mathrm{OH}), 4.90,4.44$ (methylene), 4.23, 4.19, 3.84, 3.72, 3.71 (methylene, several), 3.66 (methylene), 3.65, 3.64 (methylene), 3.57, 3.28, 3.27, $2.63(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 159.38,159.37,159.36,159.35,148.7,148.6$, $143.3,143.2,136.5,136.4,124.3,124.2,122.6,122.5,122.02,121.95,97.4,92.7,73.0,72.8,71.6,69.4$, $68.91,68.85,68.78,68.4,59.9,59.5,51.4,50.8,50.69,50.67,48.5,26.3,26.2,25.1,24.6$. MS (ESI, positive mode) $m / z 577.3[\mathrm{M}+\mathrm{H}]^{+}$, HR-MS (ESI, pos. mode) $m / z 577.2881$ calculated for $\mathrm{C}_{29} \mathrm{H}_{3} \mathrm{~N}_{8} \mathrm{O}_{5}$, found $m / z 577.2879$.

Table S1. Intrinsic activity of chelator alone towards different bacteria.

Compound	MIC ($\mu \mathrm{M}$)	
	P. aeruginosa VIM-2	K. pneumoniae $N D M-1$
8	≥ 1000	≥ 1000
9	>1000	>1000
10	>1000	>1000
11	>1000	>1000
12	>1000	>1000
13	>1000	>1000
14	>1000	>1000
15	≥ 1000	≥ 1000
16	>1000	>1000
17	>1000	>1000
19	>1000	>1000
20	>1000	>1000
27	>1000	>1000
28	1000	≥ 1000
33	≥ 1000	≥ 1000
35	≥ 1000	≥ 1000
36	>1000	>1000
37	>1000	>1000
39	>1000	>1000
40	>1000	>1000
41	>1000	>1000
42	>1000	>1000
43	>1000	>1000

$\mathbf{4 4}$	>1000	>1000
$\mathbf{4 5}$	>1000	>1000
$\mathbf{5 0}$	≥ 1000	≥ 1000
$\mathbf{5 1}$	>1000	>1000

Table S2. MIC values of meropenem (MEM) alone and in combination with boronic acid-containing chelators against E. coli and K. pneumoniae harbouring class A (KPC-2) and class D (OXA-48) β-lactamases together. The boronic acidcontaining chelators were tested at a fixed concentration of $125 \mu \mathrm{M}$.

Compound	MIC MEM (mg/L)	
	E. coli	K. pneumoniae
	OXA-48	KPC-2
MEM alone	$0.5-2$	≥ 64
$\mathbf{4 4}$	2	>64
$\mathbf{4 5}$	2	>64

References:

1. Prandina, A.; Radix, S.; Le Borgne, M.; Jordheim, L. P.; Bousfiha, Z.; Fröhlich, C.; Schröder Leiros, H.-K.; Samuelsen, \varnothing.; Frøvold, E.; Rongved, P.; Høgmoen Åstrand, O. A., Synthesis and biological evaluation of new dipicolylamine zinc chelators as metallo- β-lactamase inhibitors.

Tetrahedron 2019.

2. Rao, P. N.; Uddin, M. J.; Knaus, E. E., Design, synthesis, and structure-activity relationship studies of 3,4,6-triphenylpyran-2-ones as selective cyclooxygenase-2 inhibitors. J Med Chem 2004, 47 (16), 3972-90.
3. Goodyer, C. L. M.; Chinje, E. C.; Jaffar, M.; Stratford, I. J.; Threadgill, M. D., Synthesis of N-benzyl- and N-phenyl-2-amino-4,5-dihydrothiazoles and thioureas and evaluation as modulators of the isoforms of nitric oxide synthase. Bioorganic \& Medicinal Chemistry 2003, 11 (19), 4189-4206.
4. Kawabata, E.; Kikuchi, K.; Urano, Y.; Kojima, H.; Odani, A.; Nagano, T., Design and Synthesis of Zinc-Selective Chelators for Extracellular Applications. Journal of the American Chemical Society 2005, 127 (3), 818-819.
5. Simmons, J. T.; Allen, J. R.; Morris, D. R.; Clark, R. J.; Levenson, C. W.; Davidson, M. W.; Zhu, L., Integrated and passive 1,2,3-triazolyl groups in fluorescent indicators for zinc(II) ions: thermodynamic and kinetic evaluations. Inorg Chem 2013, 52 (10), 5838-50.
6. Murai, Y.; Masuda, K.; Ogasawara, Y.; Wang, L.; Hashidoko, Y.; Hatanaka, Y.; Iwata, S.;

Kobayashi, T.; Hashimoto, M., Synthesis of Photoreactive 2-Phenethylamine Derivatives - Synthesis of Adenosine Derivatives Enabling Functional Analysis of Adenosine Receptors by Photoaffinity Labeling. European Journal of Organic Chemistry 2013, 2013 (12), 2428-2433.
7. Berggren, G.; Thapper, A.; Huang, P.; Kurz, P.; Eriksson, L.; Styring, S.; Anderlund, M. F., Two tetranuclear Mn-complexes as biomimetic models of the oxygen evolving complex in Photosystem II. A synthesis, characterisation and reactivity study. Dalton Transactions 2009, (45), 10044-10054.
8. Huhtiniemi, T.; Suuronen, T.; Lahtela-Kakkonen, M.; Bruijn, T.; Jääskeläinen, S.; Poso, A.;

Salminen, A.; Leppänen, J.; Jarho, E., Ne-Modified lysine containing inhibitors for SIRT1 and SIRT2.
Bioorganic \& Medicinal Chemistry 2010, 18 (15), 5616-5625.
9. L., M. T.; Harriet, S.; Bernhard, S.; Luc, B.; Dirk, T.; Elisa, G. G.; Roger, S., Molecular Assembly of Multifunctional 99mTc Radiopharmaceuticals Using "Clickable" Amino Acid Derivatives.
ChemMedChem 2010, 5 (12), 2026-2038.
10. Johansson, S.; Redeby, T.; Altamore, T. M.; Nilsson, U.; Börje, A., Mechanistic Proposal for the Formation of Specific Immunogenic Complexes via a Radical Pathway: A Key Step in Allergic Contact Dermatitis to Olefinic Hydroperoxides. Chemical Research in Toxicology 2009, 22 (11), 1774-1781.
11. Baygu, Y.; Yıldız, B.; Kabay, N.; Gök, Y., Novel magnesium and zinc porphyrazines containing galactose moieties: Synthesis via click reaction and characterization. Inorganic Chemistry Communications 2016, 71, 35-40.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 8

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 9

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 10

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 11

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 12

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 13

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 14

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 16

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 17

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 18

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 19

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 20

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 33

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 35

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 36

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 37

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 38

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 39

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 40

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 41

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 42
(

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 43

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 44

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 45

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 50

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of compound 51

