Supporting Information for

"Metal-to-insulator transition in SmNiO₃ induced by chemical doping: a first

principles study"

Pilsun Yoo and Peilin Liao

School of Materials Engineering, Purdue University, West Lafayette, IN 47906, United States

Table S1. Breathing mode for orthorhombic SmNiO₃ (O-SNO, Pbnm) and monoclinic SmNiO₃ (M-SNO, P2₁/n) for different magnetic configurations: T-AFM, A-AFM, FM, and PM (paramagnetic). Larger octahedron is denoted as N_L and smaller octahedron as N_S , respectively.

Magnetism	Space	Octahedron	Octahedron	Volume	Bader
	group		volume (ų)	N _L /N _S (%)	Charge
					value (e)
PM	Pbnm	Ns	9.44	0.00	1.165
		NL	9.44		1.165
	P2 ₁ /n	Ns	9.57	0.04	1.190
		NL	9.57		1.121
FM	Pbnm	Ns	9.65	0.02	1.211
		NL	9.65		1.210
	P2 ₁ /n	Ns	9.13	10.35	1.169
		NL	10.18		1.233
T-AFM	Pbnm	Ns	9.33	0.00	1.195
		NL	9.33		1.199
	P2 ₁ /n	Ns	9.12	. 10.35	1.161
		NL	10.17		1.222
A-AFM	Pbnm	Ns	9.33	0.00	1.195
		NL	9.33		1.199
	P2 ₁ /n	N _S	9.11	11.26	1.167
		NL	10.27		1.223

Figure S1. Spin alignment in A-type antiferromagnetism (A-AFM) and T-type AFM (T-AFM). In A-AFM, two adjacent Ni layers have opposite magnetic moments along the [001] direction. On the other hand, T-AFM has more complex magnetic ordering with stairwise parallel magnetic moments.

Figure S2. Total density of states (TDOS) of orthorhombic SmNiO₃ (O-SNO, Pbnm) and monoclinic SmNiO₃ (M-SNO, P2₁/n) by PBEsol+2: (a) T-AFM of M-SNO, (b) A-AFM of M-SNO, (c) FM of M-SNO, (d) T-AFM of O-SNO (e) A-AFM of O-SNO, and (f) FM of O-SNO.

Figure S3. TDOS by SCAN functional: (a) T-AFM of M-SNO, (b) A-AFM of M-SNO, (c) FM of M-SNO, (d) T-AFM of O-SNO (e) A-AFM of O-SNO, and (f) FM of O-SNO. Except for A-AFM of O-SNO, all magnetic configurations and symmetry were predicted to be metallic.

Figure S4. (a) Stable hydrogen occupation sites for Ni layer (blue) and Sm layer (yellow) in O-SNO. Several sites that are closer than 1 Å was reduced to one site. (b) Distribution of relative energy for 1 hydrogen occupying Ni or Sm layers in O-SNO.

Ni layer vs Sm layer