Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

for

Healing Surface Roughness of Lithographic Nanopatterns through Sub-10 nm Aqueous-soluble Polymeric Particles with Excellent Dry Etch Durability

Zhen Jiang,^{a,d} Han-Hao Cheng,^c Idriss Blakey^{a,b} and Andrew K. Whittaker^{a,d}

^aAustralian Institute for Bioengineering and Nanotechnology, ^bCentre for Advanced Imaging, ^cAustralian National Fabrication Facility Queensland Node, ^dARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, 4072, Australia. *Email: a.whittaker@uq.edu.au

Supplementary figures

Figure S1. The high-resolution N1s XPS spectra of the model negatively charged surface before (A) and after (B) deposition of the micelles.

Figure S2. DSC traces for BCP-A1. Two distinct transitions at around -27°C and 53°C are observed.

Figure S3. Power spectral density (PSD) functions for the patterned TER60 resist and those further treated with BCP-A1.

Figure S4. Cross-sectional SEM image after Si etching using TER EBL patterns template.

Figure S5. Power spectral density (PSD) functions for the patterned TER60 resist before and after pattern transfer.