Supporting information

Surface Modification of Hole Transporting Layer for Efficient Perovskite Solar Cell with Enhanced Fill Factor and Stability

Mohammad Mahdi Tavakoli^{1,2*}, Rouhollah Tavakoli¹, Daniel Prochowicz³, Pankaj Yadav⁴,

Michael Saliba⁵*

¹Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran.

²Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA, USA

³Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

⁴Department of Solar Energy, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar-382 007, Gujarat, India

⁵Adolphe Merkle Institute, Chemins des Verdiers 4, CH-1700 Fribourg

* Corresponding authors: mtavakol@mit.edu; michael.saliba@unifr.ch

Figure S1. UV-visible and photoluminescence spectra of a representative MAPbI₃ perovskite film.

Figure S2. Top-view SEM image of a typical MAPbI₃ perovskite film.

Figure S3. Three-dimensional image of perovskite film fabricated by anti-solvent technique.

Figure S4. Photoluminescence spectra of perovskite films deposited on glass with spiro and rubrene/spiro HTLs.