Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2018

# *In silico* design and assembly of cage molecules into porous molecular materials.

Marco Bernabei,\*a Raul Pérez Soto, a Ismael Gómez García a and Maciej Haranczyk a

<sup>a</sup> IMDEA Materials Institute, C/Eric Kandel 2, 28906 - Getafe, Madrid, Spain

#### **Supporting Information**

#### Content

S1. Porosity characterization of the lowest energy conformers of molecules M1 -M6.

- S2. CSP validation: the benchmark case of CC3.
- S3. Predicted  $\alpha$ -phases of molecules M1-M6.

S4. Comparison between CSP and DFT-D3 results for the first five predicted structures of molecules M1-M6.

- S5. H-bond patterns in M1- $\gamma$  and M2- $\gamma$ .
- S6. MD simulations to assess the thermal stability of M1- $\gamma$  and M2- $\gamma$ .

S7. References.

### S1. Porosity characterization of the lowest energy conformers of molecules M1 -M6.



Figure S1. Lowest energy conformers of cage M1. Both enantiomers M1-R and M1-S have the same energy and tetrahedral symmetry. Nitrogen atoms are colored in blue, carbon atoms in red and green for M1-R and M1-S respectively and hydrogen atoms are omitted for clarity

|       | LCD (Å)<br>DFT-M06-2X | Window size (Å)<br>DFT-M06-2X |
|-------|-----------------------|-------------------------------|
| CC3-R | 5.50                  | 3.77                          |
| M1-R  | 4.94                  | 3.20                          |
| M2-R  | 5.31                  | 3.52                          |
| M3-R  | 5.36                  | 3.60                          |
| M4-R  | 4.97                  | 3.24                          |
| M5-R  | 4.78                  | 3.06                          |
| M6-R  | 5.21                  | 3.48                          |

Table S1. Largest cavity diameters and window size for the lowest energy R-conformers of cage CC3 and molecules M1-M6 after DFT optimizations.

#### S2. CSP validation: the benchmark covalent cage CC3.

Cage CC3 is probably the most studied cage in the imine cage family with a LCD of 5.50 Å and four windows of equal size of 3.75 Å. The enantiomer CC3-R was synthesized<sup>1</sup> from a mixture of 1,3,5-triformylbenzene and chiral (*R*,*R*)-1,2-diaminocyclohexane (see Figure 1 in the manuscript for a schematic representation). Similarly, the energetically equivalent enantiomer CC3-S can be made by a mixture of 1,3,5-triformylbenzene and chiral (*S*,*S*)-1,2-diaminocyclohexane. Applications of porous materials based on cage CC3 in its homochiral polymorph CC3-R(S)- $\alpha$ , are for example: Xenon/Krypton separation<sup>2</sup>, enantiomeric and molecular size separation<sup>3</sup>, water desalination<sup>4</sup>.

A 3D model of CC3 molecule was initially generated with LigPrep starting from a 1D SMILES corresponding to the enantiomer CC3-R(S) and submitted to a conformational search procedure.

The experimentally observed enantiomer CC3-R(S) was correctly predicted as the lowest energy conformer and further optimized in vacuum at the M06-2X/6-311G\*\* level of theory.

The DFT optimized molecular geometry was used as input for the CSP study. Homochiral crystal phases based on CC3-R were searched in the most common 6 space groups for enantiopure crystal structures (*P*1, *P*2<sub>1</sub>, *P*2<sub>1</sub>2<sub>1</sub>2, *P*2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>, *C*222<sub>1</sub>, *C*2). Similarly, racemic co-crystals CC3-(R,S) were generated in the most common 6 space groups for racemates (*P*2<sub>1</sub>/*c*,  $P^{1}$ , *C*2/*c*, *Cc*, *Pna*2<sub>1</sub>, *Pbca*). More details on the CSP procedure are provided in the method section in the main text.

The resulting energy landscape, i.e. the plot of relative lattice energy of CC3 as a function of density, is shown in Figure S2.

The energy landscape of CC3 has been already investigated by Day's group employing a Monte Carlo simulated annealing for initial structure generation and a subsequent final minimization procedure was carried out with the DMACRYS software for rigid molecules, which make use of anisotropic atom-atom model potentials.<sup>5</sup>

Our results are in quantitative agreement with the results of Day's group even using an isotropic Coulomb potential for the electrostatic interactions. Only 12 structures are found in a 50 kJ/mol range from the global minimum, and five of them, color-filled circles in Figure S2, feature a tetrahedral porous network connecting the cavities of the cages.

The global minimum, black filled point in Figure S2, corresponds to the racemic co-crystal cubic phase CC3-(R,S) $\alpha$ . The latter is not available in the Cambridge structure database since the structure and unit cell parameters were refined from PXRD experiments<sup>6</sup> therefore, a direct geometric comparison with the predicted phases is not possible.

The homochiral phase CC3-R $\alpha$ , yellow point in Figure S2, is correctly predicted as the global minimum of the structures generated in the six enantiopure space groups. The latter, initially predicted in the space group  $P2_12_12_1$  shows the full experimental symmetry  $F4_132$  and is a good geometrical match to the experimental structure PUDXES in Table 1.

Due to the large size of the imine cages our approach is limited to generating structures with Z'=1 molecules in the asymmetric unit, therefore the polymorph PUDXES02 of CC3, also known as CC3-R $\beta$  phase (see Table 1) was not predicted since it was experimentally observed in the space group P3 with Z'=3.

Although our CSP approach does not account for solvent inclusion, the structures of solvated polymorphs can still be predicted as local minima in the energy landscape even if they incur structural rearrangement upon solvent removal.

The solvated framework of PUDXES02, i.e. CC3-R $\beta$ -solvated with CSD-Refcode NODVIN, was experimentally observed in space group R3 with Z'=1 cage in the asymmetric unit.

The structure corresponding to the CC3-R $\beta$ -solvated framework (not shown in Figure S2) showed indeed the correct full *R*3 symmetry and was predicted to be a high energy structure found approximately 50 kJ/mol above the CC3-R $\alpha$  phase.

Structure overlay with experimental structures and comparison of the cell parameters for the predicted phases CC3-R $\alpha$  and CC3-R $\beta$ -solvated are presented in Figure S3 and Table S2, respectively.

Finally, to validate the accuracy of our energy model in predicting the landscape of porous organic cages we made use of DFT-D3 solid state periodic calculations to fully relax the lowest energy structures of the landscape. Results for cage CC3 are listed in Table S3. Although the relative energy of the phase CC3-R $\alpha$  increase of about 50 % after DFT-D3 relaxation, the global energy ranking is preserved and porosity, characterized by the PLD, is maintained.



Figure S2. Crystal energy landscape of CC3. Energies are w.r.t the global minimum. Both homochiral and racemic polymorphs are correctly predicted as the lowest energy structures in the enantiopure and racemic space groups, respectively.

|                                |        | Cell axes length<br>(Å) |       | Cell angles |       |       | Density<br>(g/cm³) |      |
|--------------------------------|--------|-------------------------|-------|-------------|-------|-------|--------------------|------|
| Material                       | Method | а                       | b     | с           | α     | β     | γ                  |      |
| CC3-Rα<br>(F4 <sub>1</sub> 32) | Exp.   | 24.80                   | 24.80 | 24.80       | 90.00 | 90.00 | 90.00              | 0.97 |
|                                | CSP    | 25.24                   | 25.24 | 25.24       | 90.00 | 90.00 | 90.00              | 0.92 |
| CC3-Rβ-solv<br>( <i>R</i> 3)   | Exp.   | 25.63                   | 25.63 | 11.18       | 90.00 | 90.00 | 120.00             | 0.87 |
|                                | CSP    | 26.36                   | 26.35 | 11.39       | 90.03 | 90.01 | 120.00             | 0.81 |

Table S2. Cell parameters from our CSP study compared to the experimental values for CC3-R $\alpha$  (CSD-Refcode PUDXES) and CC3-R $\beta$ -solvated (CSD-Refcode NODVIN). Both CC3-R $\alpha$  and CC3-R $\beta$ -solvated were initially predicted in space groups  $P2_12_12_1$  and P1 respectively. Full symmetry was revealed after analysis with PLATON.



Figure S3 Structural Overlay of cluster of 15 molecules for experimental (blue) and predicted (green) CC3-R $\alpha$  (Panel a) and CC3-R $\beta$ -solvated (Panel b). Solvent molecules in panel b are omitted for clarity.

| Structure  | space<br>group           | CSP<br>∆E(kJ/mol) | CSP<br>PLD(Å) | CSP<br>density(g/cm³) | DFT-D3<br>∆E(kJ/mol) | DFT-D3<br>PLD(Å) | DFT-D3<br>density(g/cm³) |
|------------|--------------------------|-------------------|---------------|-----------------------|----------------------|------------------|--------------------------|
| CC3-(R,S)α | P21/c                    | 0.00              | 3.74          | 0.94                  | 0.00                 | 4.05             | 0.99                     |
| CC3-(R,S)  | <i>C</i> <sub>2</sub> /c | 6.71              | 3.74          | 0.94                  | 7.86                 | 3.93             | 0.99                     |
| CC3-(R,S)  | Pna2 <sub>1</sub>        | 15.40             | 3.74          | 0.93                  | 22.60                | 4.00             | 0.98                     |
| CC3-(R,S)  | <i>C</i> <sub>2</sub> /c | 27.51             | 3.74          | 0.92                  | 30.93                | 3.86             | 0.99                     |
| CC3-Rα     | F4132                    | 36.21             | 3.74          | 0.92                  | 53.38                | 3.89             | 0.95                     |

Table S3. Comparison between CSP and DFT-D3 results for cage CC3.  $\Delta E$  are given w.r.t the energy of the global minimum found in CSP

## S3. Predicted $\alpha$ -phases of molecules M1-M6.



Figure S4 Lowest energy predicted structures for M1-M6. The information in the captions includes the relative lattice energy ( $\Delta E$ ) and the PLD.

## S4. Comparison between CSP and DFT-D3 results for the first five predicted structures of molecules M1-M6.

| Structure                                                                                                             | space<br>group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSP<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                             | CSP<br>PLD(Å)                                                                                                                                                           | CSP                                                                                                                                                                                                                            | DFT-D3<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT-D3<br>PLD(Å)                                                                                                                                                                 | DFT-D3                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         | density(g/cm <sup>3</sup> )                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  | density(g/cm <sup>3</sup> )                                                                                                                                                                                                             |
| M1-α                                                                                                                  | Fd-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                          | 3.10                                                                                                                                                                    | 0.96                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.12                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                    |
| M1-2                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.37                                                                                                                                                                                                                                                                                                                                                                          | 3.10                                                                                                                                                                    | 0.93                                                                                                                                                                                                                           | -8.80                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.73                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                    |
| M1-3                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.22                                                                                                                                                                                                                                                                                                                                                                          | 3.08                                                                                                                                                                    | 0.94                                                                                                                                                                                                                           | -25.66                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.88                                                                                                                                                                             | 1.07                                                                                                                                                                                                                                    |
| M1-4                                                                                                                  | p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.35                                                                                                                                                                                                                                                                                                                                                                          | 3.08                                                                                                                                                                    | 0.93                                                                                                                                                                                                                           | -4.42                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.53                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                    |
| M1-5                                                                                                                  | р1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.29                                                                                                                                                                                                                                                                                                                                                                         | 3.23                                                                                                                                                                    | 0.93                                                                                                                                                                                                                           | -2.27                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.80                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                    |
| Structure                                                                                                             | space<br>group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSP<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                             | CSP<br>PLD(Å)                                                                                                                                                           | CSP                                                                                                                                                                                                                            | DFT-D3<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT-D3<br>PLD(Å)                                                                                                                                                                 | DFT-D3                                                                                                                                                                                                                                  |
|                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                          | 2.00                                                                                                                                                                    | density(g/cm <sup>3</sup> )                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.00                                                                                                                                                                             | density(g/cm <sup>3</sup> )                                                                                                                                                                                                             |
| Μ2-α                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                          | 2.80                                                                                                                                                                    | 0.97                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.09                                                                                                                                                                             | 1.04                                                                                                                                                                                                                                    |
| M2-2                                                                                                                  | P2 <sub>1</sub> /C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.66                                                                                                                                                                                                                                                                                                                                                                          | 2.88                                                                                                                                                                    | 0.95                                                                                                                                                                                                                           | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.48                                                                                                                                                                             | 1.03                                                                                                                                                                                                                                    |
| IVI2-3                                                                                                                | <i>P</i> 1<br>  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.30                                                                                                                                                                                                                                                                                                                                                                          | 2.47                                                                                                                                                                    | 0.97                                                                                                                                                                                                                           | -6.34                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.06                                                                                                                                                                             | 1.05                                                                                                                                                                                                                                    |
| M2-4                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.52                                                                                                                                                                                                                                                                                                                                                                          | 2.60                                                                                                                                                                    | 0.97                                                                                                                                                                                                                           | -6.44                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.04                                                                                                                                                                             | 1.05                                                                                                                                                                                                                                    |
| M2-5                                                                                                                  | P2 <sub>1</sub> /c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.74                                                                                                                                                                                                                                                                                                                                                                          | 2.82                                                                                                                                                                    | 0.96                                                                                                                                                                                                                           | -8.80                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.55                                                                                                                                                                             | 1.03                                                                                                                                                                                                                                    |
| Structure                                                                                                             | space<br>group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSP<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                             | CSP<br>PLD(Å)                                                                                                                                                           | CSP                                                                                                                                                                                                                            | DFT-D3<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT-D3<br>PLD(Å)                                                                                                                                                                 | DFT-D3                                                                                                                                                                                                                                  |
| N12                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                          | 2.61                                                                                                                                                                    | density(g/cm <sup>3</sup> )                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 70                                                                                                                                                                             | density(g/cm <sup>3</sup> )                                                                                                                                                                                                             |
| Μ3-α                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 2.01                                                                                                                                                                    | 0.84                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.70                                                                                                                                                                             | 0.98                                                                                                                                                                                                                                    |
| IVI3-2                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 2.44                                                                                                                                                                    |                                                                                                                                                                                                                                | 37.09                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                  | 0.92                                                                                                                                                                                                                                    |
| N13-7                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 30                                                                                                                                                                                                                                                                                                                                                                          | 2.09                                                                                                                                                                    | 0.80                                                                                                                                                                                                                           | 21 56                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.44                                                                                                                                                                             | 0.89                                                                                                                                                                                                                                    |
| M2 E                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.00                                                                                                                                                                                                                                                                                                                                                                         | 2.03                                                                                                                                                                    | 0.84                                                                                                                                                                                                                           | 45.01                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.17                                                                                                                                                                             |                                                                                                                                                                                                                                         |
| 1013-5                                                                                                                | C2/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.50                                                                                                                                                                                                                                                                                                                                                                         | 5.01                                                                                                                                                                    | 0.81                                                                                                                                                                                                                           | 45.01                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.17                                                                                                                                                                             | 0.50                                                                                                                                                                                                                                    |
|                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                         |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |                                                                                                                                                                                                                                         |
| Structure                                                                                                             | space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CSP                                                                                                                                                                                                                                                                                                                                                                           | CSP                                                                                                                                                                     | CSP                                                                                                                                                                                                                            | DFT-D3                                                                                                                                                                                                                                                                                                                                                                                                                                   | DFT-D3                                                                                                                                                                           | DFT-D3                                                                                                                                                                                                                                  |
| Structure                                                                                                             | space<br>group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSP<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                             | CSP<br>PLD(Å)                                                                                                                                                           | CSP                                                                                                                                                                                                                            | DFT-D3<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT-D3<br>PLD(Å)                                                                                                                                                                 | DFT-D3                                                                                                                                                                                                                                  |
| Structure                                                                                                             | space<br>group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSP<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                             | CSP<br>PLD(Å)                                                                                                                                                           | CSP<br>density(g/cm <sup>3</sup> )                                                                                                                                                                                             | DFT-D3<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                                                                                     | DFT-D3<br>PLD(Å)                                                                                                                                                                 | DFT-D3<br>density(g/cm <sup>3</sup> )                                                                                                                                                                                                   |
| Structure<br>M4-α                                                                                                     | space<br>group<br>Fd-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CSP<br>ΔE(kJ/mol)<br>0.00                                                                                                                                                                                                                                                                                                                                                     | CSP<br>PLD(Å)<br>3.14                                                                                                                                                   | CSP<br>density(g/cm <sup>3</sup> )<br>1.08                                                                                                                                                                                     | DFT-D3<br>ΔE(kJ/mol)<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                             | DFT-D3<br>PLD(Å)<br>3.30                                                                                                                                                         | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09                                                                                                                                                                                           |
| Structure<br>M4-α<br>M4-2                                                                                             | space<br>group<br>Fd-3<br>ho 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54                                                                                                                                                                                                                                                                                                                                            | CSP<br>PLD(Å)<br>3.14<br>3.14                                                                                                                                           | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97                                                                                                                                                                             | DFT-D3<br>ΔE(kJ/mol)<br>0.00<br>49.40                                                                                                                                                                                                                                                                                                                                                                                                    | DFT-D3<br>PLD(Å)<br>3.30<br>3.13                                                                                                                                                 | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01                                                                                                                                                                                   |
| Structure<br>M4-α<br>M4-2<br>M4-3                                                                                     | space<br>group<br>Fd-3<br>pl<br>pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22                                                                                                                                                                                                                                                                                                                                   | CSP<br>PLD(Å)<br>3.14<br>3.14<br>3.13                                                                                                                                   | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97                                                                                                                                                                     | DFT-D3<br>∆E(kJ/mol)<br>0.00<br>49.40<br>17.63                                                                                                                                                                                                                                                                                                                                                                                           | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27                                                                                                                                         | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09                                                                                                                                                                           |
| Structure<br>M4-α<br>M4-2<br>M4-3<br>M4-4                                                                             | space<br>group<br>Fd-3<br>pl<br>pl<br>P2 <sub>1</sub> /c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CSP<br>∆E(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50                                                                                                                                                                                                                                                                                                                          | CSP<br>PLD(Å)<br>3.14<br>3.14<br>3.13<br>3.12                                                                                                                           | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97                                                                                                                                                             | DFT-D3<br>∆E(kJ/mol)<br>0.00<br>49.40<br>17.63<br>51.51                                                                                                                                                                                                                                                                                                                                                                                  | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20                                                                                                                                 | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04                                                                                                                                                                   |
| Structure<br>M4-α<br>M4-2<br>M4-3<br>M4-4<br>M4-5                                                                     | space<br>group<br>Fd-3<br>pl<br>Pl<br>P2 <sub>1</sub> /c<br>P2 <sub>1</sub> /c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSP<br>∆E(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03                                                                                                                                                                                                                                                                                                                 | CSP<br>PLD(Å)<br>3.14<br>3.14<br>3.13<br>3.12<br>3.13                                                                                                                   | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98                                                                                                                                                     | DFT-D3<br>$\Delta E(kJ/mol)$<br>0.00<br>49.40<br>17.63<br>51.51<br>13.78                                                                                                                                                                                                                                                                                                                                                                 | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84                                                                                                                         | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09                                                                                                                                                           |
| Structure<br>M4-α<br>M4-2<br>M4-3<br>M4-4<br>M4-5<br>Structure                                                        | space<br>group<br>Fd-3<br>p1<br>p1<br>$P2_1/c$<br>$P2_1/c$<br>space<br>group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)                                                                                                                                                                                                                                                                                            | CSP<br>PLD(Å)<br>3.14<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)                                                                                                  | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )                                                                                                               | DFT-D3<br>∆E(kJ/mol)<br>0.00<br>49.40<br>17.63<br>51.51<br>13.78<br>DFT-D3<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                 | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)                                                                                                     | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )                                                                                                                  |
| Structure<br>M4-α<br>M4-2<br>M4-3<br>M4-4<br>M4-5<br>Structure                                                        | space<br>group<br>Fd-3<br>pl<br>Pl<br>P2 <sub>1</sub> /c<br>P2 <sub>1</sub> /c<br>space<br>group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)                                                                                                                                                                                                                                                                                            | CSP<br>PLD(Å)<br>3.14<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)                                                                                                  | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )                                                                                                               | DFT-D3<br>∆E(kJ/mol)<br>0.00<br>49.40<br>17.63<br>51.51<br>13.78<br>DFT-D3<br>∆E(kJ/mol)                                                                                                                                                                                                                                                                                                                                                 | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)                                                                                                     | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )                                                                                                                  |
| Structure<br>M4-α<br>M4-2<br>M4-3<br>M4-4<br>M4-5<br>Structure<br>M5-α<br>M5-α                                        | space<br>group<br>Fd-3<br>pl<br>pl<br>P21/c<br>P21/c<br>P21/c<br>space<br>group<br>Fd-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)<br>0.00<br>21.48                                                                                                                                                                                                                                                                           | CSP<br>PLD(Å)<br>3.14<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59                                                                                  | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04                                                                                                       | DFT-D3<br>ΔE(kJ/mol)<br>0.00<br>49.40<br>17.63<br>51.51<br>13.78<br>DFT-D3<br>ΔE(kJ/mol)<br>0.00<br>21.62                                                                                                                                                                                                                                                                                                                                | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81                                                                                     | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18                                                                                                  |
| Structure<br>M4-α<br>M4-2<br>M4-3<br>M4-4<br>M4-5<br>Structure<br>M5-α<br>M5-α<br>M5-2<br>M5-3                        | space<br>group<br>Fd-3<br>pl<br>pl<br>P21/c<br>P21/c<br>space<br>group<br>Fd-3<br>C2/c<br>P21/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)<br>0.00<br>21.48<br>38.90                                                                                                                                                                                                                                                                  | CSP<br>PLD(Å)<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.95                                                                                  | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00                                                                                       | DFT-D3<br>ΔE(kJ/mol)<br>0.00<br>49.40<br>17.63<br>51.51<br>13.78<br>DFT-D3<br>ΔE(kJ/mol)<br>0.00<br>21.62<br>38.22                                                                                                                                                                                                                                                                                                                       | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84                                                                             | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07                                                                                          |
| Structure<br>M4-α<br>M4-2<br>M4-3<br>M4-4<br>M4-5<br>Structure<br>M5-α<br>M5-α<br>M5-2<br>M5-3<br>M5-4                | space<br>group<br>Fd-3<br>p1<br>$p2_1/c$<br>$P2_1/c$<br>space<br>group<br>Fd-3<br>$C_2/c$<br>$P2_1/c$<br>p1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)<br>0.00<br>21.48<br>38.90<br>39.40                                                                                                                                                                                                                                                         | CSP<br>PLD(Å)<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.95<br>2.94                                                                          | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99                                                                               | DFT-D3<br>∆E(kJ/mol)<br>0.00<br>49.40<br>17.63<br>51.51<br>13.78<br>DFT-D3<br>∆E(kJ/mol)<br>0.00<br>21.62<br>38.22<br>38.96                                                                                                                                                                                                                                                                                                              | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84                                                                     | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06                                                                                  |
| Structure<br>M4-α<br>M4-2<br>M4-3<br>M4-4<br>M4-5<br>Structure<br>M5-α<br>M5-α<br>M5-2<br>M5-3<br>M5-4<br>M5-5        | space<br>group<br>Fd-3<br>pl<br>pl<br>P2 <sub>1</sub> /c<br>P2 <sub>1</sub> /c<br>Space<br>group<br>Fd-3<br>C <sub>2</sub> /c<br>P2 <sub>1</sub> /c<br>pl<br>pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 45.54 \\ 50.22 \\ 51.50 \\ 52.03 \\ \hline \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.48 \\ 38.90 \\ 39.40 \\ 40.38 \\ \end{array}$                                                                                                                                   | CSP<br>PLD(Å)<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.95<br>2.94<br>2.94                                                                  | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99<br>1.00                                                                       | DFT-D3<br>$\Delta E(kJ/mol)$<br>0.00<br>49.40<br>17.63<br>51.51<br>13.78<br>DFT-D3<br>$\Delta E(kJ/mol)$<br>0.00<br>21.62<br>38.22<br>38.96<br>39.06                                                                                                                                                                                                                                                                                     | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84<br>2.84<br>2.82                                                     | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06<br>1.06                                                                          |
| Structure<br>M4-α<br>M4-2<br>M4-3<br>M4-4<br>M4-5<br>Structure<br>M5-α<br>M5-2<br>M5-3<br>M5-4<br>M5-5                | space<br>group<br>Fd-3<br>pl<br>pl<br>$P2_1/c$<br>$P2_1/c$<br>space<br>group<br>Fd-3<br>$C_2/c$<br>$P2_1/c$<br>pl<br>pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)<br>0.00<br>21.48<br>38.90<br>39.40<br>40.38                                                                                                                                                                                                                                                | CSP<br>PLD(Å)<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.95<br>2.94<br>2.94                                                                  | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99<br>1.00                                                                       | $\begin{array}{c} \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 49.40 \\ 17.63 \\ 51.51 \\ 13.78 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.62 \\ 38.22 \\ 38.96 \\ 39.06 \\ \hline \end{array}$                                                                                                                                                                                 | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84<br>2.82                                                             | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06<br>1.06                                                                          |
| Structure   M4-α   M4-2   M4-3   M4-4   M4-5   Structure   M5-α   M5-2   M5-3   M5-5   Structure                      | space<br>group<br>Fd-3<br>p1<br>$p2_1/c$<br>$P2_1/c$<br>$P2_1/c$<br>space<br>group<br>Fd-3<br>$C_2/c$<br>$P2_1/c$<br>p1<br>p1<br>p1<br>space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)<br>0.00<br>21.48<br>38.90<br>39.40<br>40.38<br>CSP                                                                                                                                                                                                                                         | CSP<br>PLD(Å)<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.95<br>2.94<br>2.94<br>CSP                                                           | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99<br>1.00<br>CSP                                                                | DFT-D3<br>ΔE(kJ/mol)<br>0.00<br>49.40<br>17.63<br>51.51<br>13.78<br>DFT-D3<br>ΔE(kJ/mol)<br>0.00<br>21.62<br>38.22<br>38.96<br>39.06<br>DFT-D3                                                                                                                                                                                                                                                                                           | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84<br>2.84<br>2.82<br>DFT-D3                                           | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06<br>1.06<br>DFT-D3                                                                |
| Structure   M4-α   M4-2   M4-3   M4-4   M4-5   Structure   M5-α   M5-2   M5-3   M5-4   M5-5   Structure               | space<br>group<br>Fd-3<br>pl<br>Pl<br>P21/c<br>P21/c<br>P21/c<br>space<br>group<br>Fd-3<br>C2/c<br>P21/c<br>pl<br>pl<br>space<br>group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)<br>0.00<br>21.48<br>38.90<br>39.40<br>40.38<br>CSP<br>ΔE(kJ/mol)                                                                                                                                                                                                                           | CSP<br>PLD(Å)<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.95<br>2.94<br>2.94<br>CSP<br>PLD(Å)                                                 | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99<br>1.00<br>CSP                                                                | DFT-D3<br>ΔE(kJ/mol)<br>0.00<br>49.40<br>17.63<br>51.51<br>13.78<br>DFT-D3<br>ΔE(kJ/mol)<br>0.00<br>21.62<br>38.22<br>38.96<br>39.06<br>DFT-D3<br>ΔE(kJ/mol)                                                                                                                                                                                                                                                                             | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84<br>2.82<br>DFT-D3<br>PLD(Å)                                         | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06<br>1.06<br>DFT-D3                                                                |
| Structure   M4-α   M4-2   M4-3   M4-4   M4-5   Structure   M5-α   M5-2   M5-3   M5-5   Structure                      | space<br>group<br>Fd-3<br>pl<br>pl<br>$P2_1/c$<br>$P2_1/c$<br>space<br>group<br>Fd-3<br>$C_2/c$<br>$P2_1/c$<br>pl<br>pl<br>space<br>group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)<br>0.00<br>21.48<br>38.90<br>39.40<br>40.38<br>CSP<br>ΔE(kJ/mol)                                                                                                                                                                                                                           | CSP<br>PLD(Å)<br>3.14<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.95<br>2.94<br>2.94<br>CSP<br>PLD(Å)                                         | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99<br>1.00<br>CSP<br>density(g/cm <sup>3</sup> )                                 | $\begin{array}{c} \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 49.40 \\ 17.63 \\ 51.51 \\ 13.78 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.62 \\ 38.22 \\ 38.96 \\ 39.06 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline \end{array}$                                                                                                                       | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84<br>2.82<br>DFT-D3<br>PLD(Å)                                         | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06<br>1.06<br>1.06<br>DFT-D3<br>density(g/cm <sup>3</sup> )                         |
| Structure   M4-α   M4-2   M4-3   M4-4   M4-5   Structure   M5-α   M5-2   M5-3   M5-5   Structure                      | space<br>group<br>Fd-3<br>pl<br>Pl<br>P2 <sub>1</sub> /c<br>P2 <sub>1</sub> /c<br>space<br>group<br>Fd-3<br>C <sub>2</sub> /c<br>P2 <sub>1</sub> /c<br>pl<br>pl<br>space<br>group<br>P2 <sub>1</sub> /c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 45.54 \\ 50.22 \\ 51.50 \\ 52.03 \\ \hline \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.48 \\ 38.90 \\ 39.40 \\ 40.38 \\ \hline \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 0.00 \\ \hline 0.00 \\ \hline 0.00 \\ \hline 0.00 \\ \hline \end{array}$ | CSP<br>PLD(Å)<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.94<br>2.94<br>2.94<br>CSP<br>PLD(Å)<br>3.37                                         | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99<br>1.00<br>CSP<br>density(g/cm <sup>3</sup> )<br>0.98                         | $\begin{array}{c} \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 49.40 \\ 17.63 \\ 51.51 \\ 13.78 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.62 \\ 38.22 \\ 38.96 \\ 39.06 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ \hline 0.00 \\ \hline 0.00 \\ \hline \end{array}$ | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84<br>2.82<br>DFT-D3<br>PLD(Å)<br>3.13                                 | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06<br>1.06<br>1.06<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.04                 |
| Structure   M4-α   M4-2   M4-3   M4-4   M4-5   Structure   M5-α   M5-3   M5-5   Structure   M6-α   M6-2               | space<br>group<br>Fd-3<br>pl<br>Pl<br>P21/c<br>P21/c<br>P21/c<br>space<br>group<br>Fd-3<br>C2/c<br>P21/c<br>pl<br>pl<br>space<br>group<br>P21/c<br>pl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CSP<br>ΔE(kJ/mol)<br>0.00<br>45.54<br>50.22<br>51.50<br>52.03<br>CSP<br>ΔE(kJ/mol)<br>0.00<br>21.48<br>38.90<br>39.40<br>40.38<br>CSP<br>ΔE(kJ/mol)<br>0.00<br>2.62                                                                                                                                                                                                           | CSP<br>PLD(Å)<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.95<br>2.94<br>2.94<br>CSP<br>PLD(Å)<br>3.37<br>2.22                                 | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99<br>1.00<br>CSP<br>density(g/cm <sup>3</sup> )<br>0.98<br>0.95                 | $\begin{array}{c} \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 49.40 \\ 17.63 \\ 51.51 \\ 13.78 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.62 \\ 38.22 \\ 38.96 \\ 39.06 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 7.45 \\ \hline \end{array}$                                                                                                | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84<br>2.84<br>2.82<br>DFT-D3<br>PLD(Å)<br>3.13<br>1.93                 | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06<br>1.06<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.04<br>1.00         |
| Structure   M4-α   M4-2   M4-3   M4-4   M4-5   Structure   M5-α   M5-2   M5-3   M5-5   Structure   M6-α   M6-2   M6-3 | space<br>group<br>Fd-3<br>p1<br>P2 <sub>1</sub> /c<br>P2 <sub>1</sub> /c<br>space<br>group<br>Fd-3<br>C <sub>2</sub> /c<br>P2 <sub>1</sub> /c<br>p1<br>p1<br>space<br>group<br>P2 <sub>1</sub> /c<br>p1<br>p1<br>P2 <sub>1</sub> /c<br>P2 <sub>1</sub> /c<br>P1<br>P1<br>P1 | $\begin{array}{c} \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 45.54 \\ 50.22 \\ 51.50 \\ 52.03 \\ \hline \\ \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.48 \\ 38.90 \\ 39.40 \\ 40.38 \\ \hline \\ \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 2.62 \\ 5.83 \\ \hline \end{array}$                                | CSP<br>PLD(Å)<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.94<br>2.94<br>CSP<br>PLD(Å)<br>3.37<br>2.22<br>2.28                                 | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99<br>1.00<br>CSP<br>density(g/cm <sup>3</sup> )<br>0.98<br>0.95<br>0.93         | $\begin{array}{c} \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 49.40 \\ 17.63 \\ 51.51 \\ 13.78 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.62 \\ 38.22 \\ 38.96 \\ 39.06 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 7.45 \\ 23.24 \\ \hline \end{array}$                                                                                       | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84<br>2.84<br>2.84<br>2.82<br>DFT-D3<br>PLD(Å)<br>3.13<br>1.93<br>2.00 | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06<br>1.06<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.04<br>1.00<br>0.98 |
| Structure   M4-α   M4-2   M4-3   M4-4   M4-5   Structure   M5-α   M5-2   M5-3   M5-5   Structure   M6-α   M6-3   M6-4 | space<br>group<br>Fd-3<br>pl<br>$p2_1/c$<br>$P2_1/c$<br>space<br>group<br>Fd-3<br>$C_2/c$<br>$P2_1/c$<br>pl<br>pl<br>space<br>group<br>$P2_1/c$<br>pl<br>pl<br>$P2_1/c$<br>pl<br>pl<br>$P2_1/c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 45.54 \\ 50.22 \\ 51.50 \\ 52.03 \\ \hline \\ \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.48 \\ 38.90 \\ 39.40 \\ 40.38 \\ \hline \\ \text{CSP} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 2.62 \\ 5.83 \\ 7.52 \\ \hline \end{array}$                        | CSP<br>PLD(Å)<br>3.14<br>3.14<br>3.13<br>3.12<br>3.13<br>CSP<br>PLD(Å)<br>2.51<br>2.59<br>2.95<br>2.94<br>2.94<br>2.94<br>CSP<br>PLD(Å)<br>3.37<br>2.22<br>2.28<br>3.30 | CSP<br>density(g/cm <sup>3</sup> )<br>1.08<br>0.97<br>0.97<br>0.97<br>0.98<br>CSP<br>density(g/cm <sup>3</sup> )<br>1.04<br>1.03<br>1.00<br>0.99<br>1.00<br>CSP<br>density(g/cm <sup>3</sup> )<br>0.98<br>0.95<br>0.93<br>0.94 | $\begin{array}{c} \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 49.40 \\ 17.63 \\ 51.51 \\ 13.78 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 21.62 \\ 38.22 \\ 38.96 \\ 39.06 \\ \hline \text{DFT-D3} \\ \Delta \text{E}(\text{kJ/mol}) \\ \hline 0.00 \\ 7.45 \\ 23.24 \\ 22.77 \\ \hline \end{array}$                                                                              | DFT-D3<br>PLD(Å)<br>3.30<br>3.13<br>3.27<br>3.20<br>3.84<br>DFT-D3<br>PLD(Å)<br>1.45<br>1.81<br>2.84<br>2.84<br>2.82<br>DFT-D3<br>PLD(Å)<br>3.13<br>1.93<br>2.00<br>3.03         | DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.09<br>1.01<br>1.09<br>1.04<br>1.09<br>DFT-D3<br>density(g/cm <sup>3</sup> )<br>1.22<br>1.18<br>1.07<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>1.06<br>0.98                                  |

Table S4 Comparison between CSP and DFT-D3 results for the first five structures w.r.t. the predicted global minimum.  $\Delta E$  are given w.r.t the energy of the the  $\alpha$ -phases at CSP and DFT-D3 level.

#### S5. H-bond patterns in M1- $\gamma$ and M2- $\gamma$ .



Figure S5 Left panel: Small cluster of the structure M1- $\gamma$ . Intermolecular C(sp<sup>3</sup>)H---N bonds are displayed as red lines. Right panel: Small cluster of the structure M2- $\gamma$ . Intermolecular C(sp<sup>2</sup>)H--- $\pi$  bonds are displayed as green lines.



#### S6. MD simulations to assess the thermal stability of M1- $\gamma$ and M2- $\gamma$ .

Figure S6 **Top panels**: Projection of a supercell of structure M1- $\gamma$  at the beginning (left) and at the end (right) of a 1ns MD simulation. **Bottom panels**: Projection of a supercell of structure M2- $\gamma$  at the beginning (left) and at the end (right) of a 1ns MD simulation

#### S7. References.

- 1 T. Tozawa, J. T. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespear et al. Nature Materials 2009, 8, 973.
- 2 L. Chen, P. S. Reiss, S. Y. Chong, D. Holden, K. E. Jelfs, T. Hasell et al., Nature Materials, 2014, 13, 954.
- 3 A. Kewley, A. Stephenson, L. Chen, M. E. Briggs, T. Hasell and A. I. Cooper, *Chemistry of Materials* 2015, **27**, 3207.;T. Mitra, K. E. Jelfs, M. Schmidtmann, A. Ahmed, S. Y. Chong, D. J. Adamas and A. I. Cooper, *Nature Chemistry*, 2013, **5**, 276.
- 4 X. Kong and J. Jiang, *Phys. Chem. Chem. Phys.*, 2017, **19**, 18178.;X. Kong and J. Jiang, *J. Phys. Chem. C*, 2018, **122**, 1732.
- 5 E. O. Pyzer-Knapp, H. P. G. Thompson, F. Schiffmann, K. E. Jelfs, S. Y. Chong, M. A. Little, A. I. Cooper and G. M. Day. *Chem. Sci.* 2014, **5**, 2235 and references therein.
- 6 J. A. T. Jones, T. Hasell, X. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann et al., Nature, 2011, 474, 367.