Fluorescence switching with subphthalocyaninedihydroazulene dyads

Henrik Gotfredsen, Martin Drøhse Kilde, Marco Santella, Anders Kadziola and Mogens Brøndsted Nielsen*

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark. E-mail: mbn@chem.ku.dk

Electronic supporting information

Table of Contents

NMR Spectra	2
Selected Crystallographic Data	4
UV-Vis Absorption Spectra	5
Fluorescence Quantum Yields	6
Switching Studies	8
References	10

Figure S4. ¹³C-NMR (126 MHz) spectrum of 6 recorded in CDCl₃.

Selected Crystallographic Data

ССРС	1861766
Empirical formula	
Eormula weight	718 57
	10.01
space group	P-1
	10.374(14)
b/A	12.619(14)
c/A	15.496(17)
α/°	71.92(6)
β/°	80.91(5)
٧/°	71.19(4)
Volume/Å ³	1822(4)
Z	2
ρ _{calc} g/cm ³	1.310
µ/mm ⁻¹	0.081
F(000)	744.0
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.62 to 50.7
Index ranges	$-12 \le h \le 12, -14 \le k \le 15, -18 \le l \le 18$
Reflections collected	47387
Independent reflections	6522 [R _{int} = 0.0359]
Data/restraints/parameters	6522/0/505
Goodness-of-fit on F ²	1.023
Final R indexes [I>=2σ (I)]	R ₁ = 0.0760, wR ₂ = 0.2092
Final R indexes [all data]	R ₁ = 0.0943, wR ₂ = 0.2286
Largest diff. peak/hole / e Å-3	1.26/-0.45

Figure S5. UV-Vis absorption spectrum of 3 recorded in toluene.

Figure S6. UV-Vis absorption spectrum of 6 recorded in toluene.

Fluorescence Quantum Yields

Fluorescence quantum yields (QYs) were measured by multipoint determination using a Cary 300 UV-Vis spectrophotometer for absorption measurements and a Fluotime 300 (PicoQuant) instrument for fluorescence measurements. Cresyl violet perchlorate in absolute ethanol was used as reference dye.¹

The quantum yields (Φ_F) were determined using the relative method according to the following formula.²

$$\Phi_F = \Phi_{F,ref} \frac{\alpha \cdot n^2}{\alpha_{ref} \cdot n_{ref}^2}$$

The subscript *ref* designates the reference dye (cresyl violet perchlorate or CVP, $\Phi_{F,ref} = 0.56$ in ethanol), *n* the refractive index of the solvent and α the slope obtained from a linear-fit to a set of data points (I_{int} vs. f_a). Here I_{int} refers to the integrated emission intensity and f_a to the fraction of absorbed light ($f_a = 1-10^{-A}$, *A* being the absorbance measured at the wavelength of excitation, 507 nm). For all QY determinations five or more data points were collected with a measured absorbance below 0.1 for the longest wavelength absorption.

Figure S7. Fraction of absorbed light for **CVP** (reference dye, left) in EtOH and compound **3** (right) in toluene at different concentrations.

Figure S8. Emission spectra (excitation at 507 nm) of **CVP** (reference dye, left) in EtOH and **3** (right) in toluene at different concentrations.

Figure S9. Linear-fit of data points (I_{int} vs f_a) for CVP (left) and 3 (right).

Figure S10. Left: Change in absorption spectra upon converting **3-DHA** to **3-VHF** in toluene by irradiation at 420 nm. Right: Change in absorption spectra upon thermal conversion of **3-VHF** to **3-DHA** in toluene at 25 °C.

Figure S11. Left: Change in absorption spectra upon converting **6-DHA** to **6-VHF** in toluene by irradiation at 420 nm. Right: Change in absorption spectra upon thermal conversion of **6-VHF** to **6-DHA** in toluene at 25 °C. The conversions do not occur with isosbestic points due to degradation.

A sample of a pure photochromic SubPc-DHA was dissolved in toluene. This stock solution was kept in the dark at all times. A sample of the stock solution was placed in the cuvette, and a spectrum was acquired (25 °C). The sample was then irradiated at 420 nm for a short while (seconds to minutes for **3** and minutes to hours for **6**), then a spectrum was acquired (UV-Vis or fluorescence). This procedure was repeated until no change in the spectrum could be seen, going from SubPc-DHA to SubPc-VHF (for **6** this was repeated until what seemed to be degradation of

the system instead of conversion from **6**-DHA to **6**-VHF). When fully converted, the SubPc-VHF to SubPc-DHA back-reaction was monitored at 25 °C by acquiring a UV-Vis absorption spectrum over more than one half-live. The conversion of **3**-DHA to **3**-VHF occurred with isosbestic points in the absorption spectra and also from **3**-VHF to **3**-DHA (see Figure 4 in article). The decay of absorption at 460 nm of the SubPc-VHF-species was plotted against time. The exponential decay of the SubPc-VHF absorbance was subjected to curve fitting (first-order kinetics), from which the rate constant k_{25}° (SubPc-VHF to SubPc-DHA) was determined (Figures S12 and S13).

Figure S12. Decay in absorbance of 3-VHF at 460 nm in time at 25 °C in toluene.

Figure S13. Decay in absorbance of **6-VHF** (plus degradation products) at 460 nm in time at 25 °C in toluene.

References

- 1. R. Sems and K. H. Drexhage, *J. Lumin.*, 1981, **24-25**, 709-712.
- C. Würt, M. Grabolle, J. Pauli, M. Spieles and U. Resch-Genger, *Nat. Protoc.*, 2013, 8, 1535-1550.