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1. Experimental details. 

1.1. Fabrication of gas chromatograph (GC) stationary phase-modified porous gate field-effect transistor 

(PGFET) samples 

To fabricate the GC stationary phase material-modified PGFETs, we used an n-channel depletion mode FET-based 

sample (ISFET com., Japan), with no gate electrode. GC stationary phase materials, such as dimethyl poly siloxane 

(silicone OV-1; Shinwa Chemical Industries, Japan), polyethylene glycol (PEG; PEG4000, USP, USA), diethylene 

glycol succinate (DEGS; SUPELCO, USA), and tetrakis(hydroxyethyl)ethylene diamine (THEED; GL Sciences, 

Japan) were applied as layers to modulate interactions with gaseous molecules in the FET gate structure. PEG was 

dissolved in pure water at a concentration of 0.1 g L1. Silicone OV-1, THEED, and DEGS were dissolved in 

tetrahydrofuran (THF; Fujifilm Wako Pure Chemical, Japan) at 0.1 g L1. A 2-L portion of the solution was dropped 

onto the surface of the top insulating layer in the planner FET gate structure at room temperature. After dropping of 

the stationary phase material-dissolved solution, the FET sample was heated at 110 C for 20 min in an oven to 

evaporate the solution. After evaporation of the solution, the stationary phase layer was formed. Then, a short (30 s) 

treatment by a radio-frequency (RF) sputtering process was applied to form a porous Pt gate electrode as the top layer 

of the PGFET structure. The conditions for RF sputtering included a power of 50 W in a vacuum chamber with a 1 

Pa Ar atmosphere. 

 

1.2. Real-time volatile organic compound (VOC) sensing by stationary phase-modified PGFETs 

For real-time VOC vapor sensing by the stationary phase material-modified PGFET, we used a dedicated electronic 

circuit. For real-time monitoring, the drain-source voltage (VDS) and gate voltage (VG) of the FET were fixed at 40 

and 400 mV, respectively. The sampling frequency was set to be 10 Hz (i.e., a sampling period of 0.1 s). The chemical-

sensitive FET samples were arrayed and housed in a gas-flow cell, as shown in Fig. S3. Aldehydic functional 

compounds such as nonanal, hexanal, and benzaldehyde were used as the VOC analytes. The VOC vapor was 

generated by a vapor-generating apparatus (Permeater PD-1B-2, GASTEC, Japan) and added to the gas-flow cell 

under the flow of dry N2 carrier gas. The concentration of the vapor analyte (nonanal 0.4, 0.8, 2 ppm; hexanal 4, 7, 

13 ppm; benzaldehyde 0.7, 1, 6 ppm) was conditioned by selecting the glass tube size, which contained the VOC, 

and the heating temperature. The sample flow rate of the VOC vapor under a dry N2 carrier gas was fixed at 0.5 L 

min1. After stabilization of the measurement equipment in all measurements, sensing measurements by the four 

PGFET sensors were started. The sample-flow interval was 10 s. The introduction of VOC analyte to the gas-flow 

cell was repeated five times in one measurement. All sensing measurements were conducted two times. 

 

1.3. Electron microscope observations of the PGFET sample 

A representative PGFET, sample s1, was observed by electron microscope imaging. Top view observations of the 

PGFET sensor and porous Pt gate electrode (Fig. S1 and 1b) were acquired on a scanning electron microscope (SEM; 

JSM-7800F, JEOL, Japan) operating at accelerating voltages of 5 and 10 kV. After SEM observations, the sample 

was processed by a focused ion beam (FIB) system (JIB-4501, JEOL, Japan) to obtain cross sections of the FET gate 

structure. To protect the configuration in the FIB cutting process, the sample was protected with resin. The cross-

sectional gate structure (Fig. 1c and S2) was observed by transmission electron microscope (TEM; JEM-2100F, JEOL, 
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Japan) imaging operating at an accelerating voltage of 200 kV. 

 

1.4. Classification of signal patterns derived from PGFET sensors by machine-learning technique for recognition 

of VOCs 

The measured peaks (measured 2 times) were used for a supervised learning approach. Individual five-peak patterns 

were extracted from the sensing results in the manner shown in Fig. S5. In the peak pattern, the VOC-flow starting 

point and the point of the next VOC flow were defined as start and end-point, respectively. The extracted peak pattern 

is expressed as the follow function 1: 

 

𝑔(𝑛)      𝑛 = 1, 2, ⋯ , 𝑁,         (1) 

where n is time-series data index. 

 

To generate feature vectors applied for a machine learning technique, signal processing was conducted through a 

discrete Fourier transform (DFT) with the following formula: 

 

G(k) = ∑ 𝑔(𝑛)𝑤(𝑛)𝑒𝑥𝑝 (−𝑗
2𝜋𝑘𝑛

𝑁
)

𝑁−1

𝑛=0

= 𝐴𝑖,𝑘 − 𝑗𝐵𝑖,𝑘  ,      (2) 

 

where w(n) is a Hann window function; frequency index, k = 0, 1, 2, , N1; channel index, i = 0, 1, 2, , I; j is an 

imaginary unit. Ai,k and Bi,k are the real and imaginary part of a complex number, respectively. 

In the spectrum, similar to DFT, the feature vector x is expressed by Ai,k and Bi,k as: 

 

x = [𝐴1,𝑘𝑚𝑖𝑛
, 𝐴1,𝑘𝑚𝑖𝑛+1

, ⋯ , 𝐴1,𝑘𝑚𝑎𝑥
, 𝐵1,𝑘𝑚𝑖𝑛

, 𝐵1,𝑘𝑚𝑖𝑛+1
, ⋯ , 𝐵1,𝑘𝑚𝑎𝑥

, 

𝐴2,𝑘𝑚𝑖𝑛
, 𝐴2,𝑘𝑚𝑖𝑛+1

, ⋯ , 𝐴2,𝑘𝑚𝑎𝑥
, 𝐵2,𝑘𝑚𝑖𝑛

, 𝐵2,𝑘𝑚𝑖𝑛+1
, ⋯ , 𝐵2,𝑘𝑚𝑎𝑥

, 

⋯ , 𝐴𝐼,𝑘𝑚𝑖𝑛
, 𝐴𝐼,𝑘𝑚𝑖𝑛+1

, ⋯ , 𝐴𝐼,𝑘𝑚𝑎𝑥
, 𝐵𝐼,𝑘𝑚𝑖𝑛

, 𝐵𝐼,𝑘𝑚𝑖𝑛+1
, ⋯ , 𝐵𝐼,𝑘𝑚𝑎𝑥

]      (3) 

 

where kmax (550) and kmin (0) are the upper and lower limit frequency, respectively. In this work, the dimensions of 

the feature vectors are 2(kmax  kmin 1) I, where I = 4 (the number of stationary phase-modified PGFET sensors). 

 

The data set of feature vectors was used to classify the signal patterns by an algorithm of random forest in a machine 

learning software of Waikato Environment for Knowledge Analysis: Weka. Cross-validations were conducted 

between each peak pattern except for peak 1. Parameters were tuned to optimize the value of the F-measure as a 

measure of classification precision. 

 

 

 

 



4 

 

2. Supplemental figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1. Top view image of the PGFET of sensor 1. Scale bar is 50 m. 
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Fig. S2. Cross-sectional TEM image of the PGFET of sensor 1. Scale bar is 200 mm. 
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Fig. S3. Sensor array of developed stationary phase-modified PGFET sensors. (a) Arrayed PGFET sensors with 

no capping of the gas-flow cell, (b) with capping, and (c) appearance of real-time sensing measurement with 

the gas-flow cell containing the PGFET sensor array. 
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Fig. S4. Peak height differences from each stationary phase material-modified PGFETs 

at room temperature. 
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Fig. S5. Extraction of responsive peak patterns from a real-time measurement result. 




