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1. Introduction  
 
Section 2 contains the derivation of the maximum transmission coefficient, which is defined 
as the ratio of output energy over input energy. We show that at low values of the 
electromechanical coupling coefficient, k2, the maximum transmission coefficient is the same 
as the transmission coefficient for maximum output energy, viz. k2/(4-2k2). At high values of 
k2, approaching 1, the maximum transmission coefficient goes to unity instead of ½k2. We 
show that this situation is practically irrelevant as a maximum transmission coefficient of 
unity then corresponds to a negligible output energy.  
 
In Section 3 we calculate the elastic mechanical strain for various geometries of the 
piezoelectric harvester as a function of applied force. We show that the stored mechanical 
energy going from a clamped disk to a bimorph cantilever differ by more than 6 orders of 
magnitude. Consequently, the simple boundary condition of a clamped disk is experimentally 
the only way to reliably compare the performance of a variety of materials in a piezoelectric 
energy harvester. Details of the strain energy calculations are presented in Section 4.  
 
A piezometer system, built to quantitatively relate the stored electrical energy with the 
piezoelectric charge and voltage coefficients, is presented in Section 5. In the geometry of a 
clamped disc there is no shear or bending, meaning that there is hardly any stored electrical 
energy. Therefore the piezometer system had to be extremely sensitive; able to detect stored 
energy in the order of nJ/cm3. We present the working principle of the piezometer system, the 
force transfer, the temperature control, and the data extraction.  
 
To validate dg as the figure of merit for energy harvesting, we used the intermediate, or 
unsaturated, polarization states of the piezoceramic PZ27 as a model system. The complete 
electrical characterization is presented in Section 6. We show the relative dielectric constant, 
piezoelectric charge coefficient, electromechanical coupling constant, figure of merit, 
mechanical quality factor and dielectric loss, all as a function of remanent polarization.  
 
In Section 7 we show that the expression for the output energy derived, automatically leads to 
the expression for the output power of a basic vibration-based generator in resonance, as 
derived in the seminal paper of Roundy.1 As a special case, in Section 8, we analyze strain-
driven generators 
 
There are many ways to transfer the stored energy electrical energy to the outside world such 
as diode rings or inductive coils. We did not optimize the electrical-electrical conversion but 
used a resistive load. A detailed analysis of the equivalent electrical circuit is presented in 
Section 9. The conversion efficiency is 50%. 
 
2. Maximum transmission coefficient of a piezoelectric harvester 
 
The harvester can be optimized to extract the maximum amount of stored energy, as analyzed 
in the main text, but it can also be optimized to obtain the maximum transmission coefficient, 
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λmax. The transmission coefficient, λ, is the ratio of output energy over input energy.1-3 For a 
linear transducer: 
 
𝜆 = !"#$"# !"#!!"#$!% !"!#$%

!"#$% !"!#$%&#'" !"!#$%
 , or equivalently 𝜆 =  !"#$"# !"!#$%&#'" !"!#$%

!"#$% !"#!!"#$!% !"!#$%
	 		             (S1) 

 
We take a piezoelectric capacitor with a mechanical load as with zero mechanical load, or 
complete clamped conditions (i.e. no strain), no energy is sent to the outside world. We take 
the simplest case where a mass is put on the piezoelectric capacitor. The mechanical load 
yields a constant compressive stress, X, i.e.  X < 0. The stress of the load induces a strain, x, of 
sX and an electrical displacement of dX. The electrodes are first grounded to annihilate the 
excess charges. Then, in order to generate an outside stress, an electric field, E, is applied. 
This field yields an additional strain of dE. The total strain is then given by: 
 
𝑥 = 𝑠𝑋 +  𝑑𝐸	 	 	 	 	 	      (S2) 
 
and the mechanical output energy is given by: 
 
𝑈!"# =

!
!
𝑥𝑋 =  !

!
𝑠𝑋 + 𝑑𝐸 𝑋	 	 	 	     (S3) 

 
The corresponding input electrical energy follows from the displacement as: 
 
𝑈!"!#$,!" =

!
!
𝐷𝐸 =  !

!
  𝜀!𝜀!𝐸 + 𝑑𝑋 𝐸 = !

!
  𝜀!𝜀!𝐸 + 𝑑(−

!"
!!
) 𝐸 			   (S4) 

 
The transmission coefficient is the ratio between output work, c.f. eqn. (S3), and input 
electrical energy, c.f. eqn. (S4), and reads: 
 
λ = −  !

!
 𝑑𝐸 + 𝑠𝑋 𝑋 /  !

!
  𝜀!𝜀!𝐸 + 𝑑𝑋 𝐸 = −(𝑑𝑔 + 𝑠𝑔!)/  𝜀!𝜀! + 𝑑𝑔               (S5) 

 
where g is taken as X/E. Following Ref.2, 3, the value of g where the transmission coefficient is 
maximum, is obtained from dλ/dg is zero and derived as:  
 
 𝑔!"#  =  (𝑋/𝐸)!"# = 𝜀!𝜀!/𝑑  (−1 ± (1− 𝑘!)                 (S6) 
 
We take only the positive sign, as the negative sign leads to a second derivate smaller than 
zero. The limiting values for k → 0 and k → 1  are: 
  
 lim!!! 𝑔!"#  =  −1/2 𝜀!𝜀!/𝑑 𝑘!    =   −   d/2s                                                                 (S7) 
 
 lim!!! 𝑔!"#  =  − 𝜀!𝜀!/𝑑   =   −   d/s                                                                           (S8) 
 
Meaning that the maximum transmission coefficient is obtained at low values of k2 when the 
strain induced by the external load is half of the strain generated by the electric field, and for 
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values of k2 approaching unity the strain induced by the external load is equal to the strain 
generated by the electric field. Putting the value for gmax in the transmission coefficient leads 
to:  
 
𝜆!"#  = −  (𝑑𝑔 − !

!
∗ (2𝜀!𝜀!𝑠𝑔 + 𝜀!𝜀!𝑑)) /(𝜀!𝜀! + 𝑑𝑔)                                         (S9) 

 
which can be rewritten as 
 
𝜆!"#  = −  (𝑑𝑔 !

!!
− 1 +  𝜀!𝜀! )/(𝜀!𝜀! (1− 𝑘!))                                                    (S10) 

 
            = !

!!
− 1− !

!!
∗  (1− 𝑘!)                                                                            (S11) 

 

           =  1/𝑘 −  (1/𝑘)! − 1)
!
=  1/𝑘  +  (1/𝑘)! − 1)

!!
                                   (S12) 

 
where we have used: 
 
!
!
− !

!

!
− 1 ∗ !

!
+ !

!

!
− 1 = 1                                                                               (S13) 

At small values of k2, λmax can be approximated as: 
 

𝜆!"# =  1/𝑘  +  (1/𝑘)! − 1)
!!

  ≅  𝑘!/(4− 2𝑘!)                                                   (S14) 
 
which is equal to the transmission coefficient derived for the maximum output energy, c.f. eqn. 
(14) as derived in the main manuscript.   
 
The electrical input energy for the maximum transmission coefficient is calculated using eqn. 
(S6) for gmax as:  
 
𝑈!"!# = 𝑘! (1− 𝑘!) (−1+ (1− 𝑘!))!! ∗ !

!
𝑠𝑋! = (1− 𝑘!)/𝜆!"# ∗

!
!
𝑠𝑋!            (S15) 

 
which leads to the corresponding output energy: 
 
𝑈!"!"#!  = 𝜆!"#𝑈!"!# =  (1− 𝑘!) ∗ !

!
𝑠𝑋!                               (S16) 

 
For low values of k2, below about 0.6, the maximum transmission coefficient is the same as 
the transmission coefficient for maximum output energy, viz. k2/(4-2k2). Furthermore, the 
expressions for both input and output energy are similar. Maximum output energy and 
maximum transmission coefficient are obtained when the strain of the mechanical load is half 
the electrically generated strain, i.e. X/E is equal to -2d/s.  
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At very high values of k2, approaching 1, there is a difference. The maximum transmission 
coefficient goes to unity instead of ½ k2. However, the maximum transmission coefficient is 
realized when the strain of the load is about equal to the strain due to the electric field. The 
total strain, and, hence, the output power both go to zero, as described by eqn. (S12). 
Therefore, this situation is practically irrelevant. A classical problem, the maximum 
transmission coefficient is unity but under that constraint you cannot harvest energy. At high 
k2 don’t go for the maximum transmission coefficient but simply harvest the maximum output 
energy. 
 
 
3. Stored electrical energy and input mechanical energy  
 
In this work, the maximum stored electrical energy, for a single sinusoidal excitation, has 
consistently been in the order of nJ/cm3. However, output powers of vibrational energy 
harvesters are commonly reported in the order of mW/cm3. The discrepancy is due to the 
boundary conditions of the mechanical load, as will be discussed below.  
 
We measured the stored electrical energy of different material classes in the simple boundary 
condition of a clamped disk. This is experimentally the only way to reliably compare a variety 
of piezoelectric materials under identical conditions. However, we note that this clamped 
condition is the least efficient at transferring the applied load into elastic strain energy. The 
calculated elastic strain energy of a clamped plate, of dimensions 1 x 1 x 0.1 cm, is shown in 
Fig. S1a as a function of applied force. At 10 N, only 5.95 nJ of elastic strain energy is 
induced. We derive an electromechanical coupling coefficient, k2, of 0.36, by dividing the 
measured stored electrical energy over the calculated mechanical strain energy of the PZ27 
disk. This value is in perfect agreement with the measured value of 0.35, as shown in ESI 
Section 6, and with reported values for PZT piezoceramics. Hence, we can conclude that the 
calculated strain energy in a clamped disk is a good approximation for the actual strain energy. 
 
To increase the stored electrical energy of the piezoelectric material, the mechanical boundary 
conditions must be changed in order to induce more elastic strain energy per applied force. To 
this end we calculated the stored mechanical energy for a fixed volume of piezoelectric 
material, by varying only the shape and clamping conditions. For six different configurations, 
shown in Fig. S1b, the strain energy as a function of applied force is presented in Fig. S1a. 
Details of the calculations are presented in ESI Section 4.  
 
In the first example, we changed the clamped plate into a simply supported plate of the same 
dimensions. As the plate can bend in the center, the strain energy immediately increases by 
three orders of magnitude, as shown by the dash-dotted light blue curve in Fig. S1a.  
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Figure S1. Calculated mechanical input energy and electrical output energy of 0.1 cm3 
volume of piezoelectric material, in six boundary conditions. (a) Elastic strain energy of 
common piezoelectric energy harvesting components. The open diamond markers represent 
the measured stored electrical energy of a clamped PZ27 disk, reproduced from the main text 
in Fig. 4. (b) Graphical representations of the boundary conditions of the analytically 
calculated piezoelectric plates. From bottom to top: a clamped plate, a simply supported plate, 
a cantilever plate, a cantilever unimorph, a 4:1 cantilever unimorph where the length of the 
plate is 4 times its width, and a 25:1 cantilever unimorph with length 25 times its width. The 
depictions of the cantilever unimorphs with altered geometric ratios are not to scale. The 
unimorph substrate is scaled such that the neutral axis of the stress is at the bottom of the 
piezoelectric layer. 
 
To get even more bending, we exchanged the simply supported plate by a cantilever plate. 
The strain energy is now even 4.5 orders of magnitude larger, as shown by the yellow, mid-
range solid curve in Fig. S1a. The curve abruptly ends at 6.3 N of force, since applying higher 
forces exceeds the critical tensile stress, Xcrit, of 34.2 MPa at which the expected probability 
of failure of this ceramic is 1%.4 Soft PZT ceramics can withstand higher compressive strain 
than tensile strain, so to ensure the full volume of the piezoelectric ceramic material is in 
compression, a unimorph configuration is used.  
 
To calculate the strain energy of the unimorph, we take the same volume of piezoelectric 
material and assume it is perfectly bonded to an Al plate of equal width and length. To ensure 
that the piezoelectric plate is in compression, the thickness of the Al plate is chosen such that 
the neutral axis of the unimorph coincides with the interface between the piezoelectric plate 
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and Al substrate. The unimorph configuration induces about an order of magnitude less strain 
energy than the cantilever plate, as can be seen from the dotted curve in Fig. S1a. However, 
although the stored energy is slightly less, the unimorph can withstand higher absolute strain.  
 
Still more elastic strain energy can be induced in the same volume of piezoelectric material by 
changing the geometric ratio of the cantilever unimorph, i.e., making it longer and less wide 
(shown by the top two curves in Fig. S1a. We note that the critical compressive strain, is 
reached at 7.4 N in the cantilever unimorph with a 25:1 geometric ratio. This type of 
component configuration more closely resembles the piezoelectric harvesters used in 
literature. For example, at 1 N of applied force, the cantilever unimorph with a geometric ratio 
of 25:1 achieves 1.6 mJ/cm3 of strain energy. Assuming the electromechanical coupling is 
unaffected by the change in boundary conditions from a clamped plate to a cantilever 
unimorph, the stored electrical energy is expected to be about 0.58 mJ/cm3. When the 
piezoelectric component is actuated at 10 Hz, under the same measurement conditions used in 
this work, the stored electrical power would then be 5.8 mW/cm3. We note that this order of 
magnitude perfectly fits the reported estimations for the generated power per unit volume.5, 6  
  
  
4. Calculation of elastic strain energy as a function of geometric boundary conditions  
 
For a square plate of dimensions of length, L, equal to the breadth, b, of 10 mm and thickness, 
t, of 1 mm, the formula for the elastic strain energy, U, is given for each geometric boundary 
condition described in the S.I Section 3. For a clamped plate, U is calculated from the closed 
form solution as:  
 

𝑈 = !!!
!!"

                               (S17) 
 
where F is the applied force, A is the area and Y is the Young’s modulus. There are no closed 
form solutions for the other cases investigated here, such as simply supported and cantilever 
boundary conditions. Thus approximations were used, based on the approaches presented in 
Young and Budynas.7 
 
We approximated simply supported and cantilever plates as wide beams. In this case the 
stiffness needs to be corrected by replacing the Young’s modulus with Y/(1-ν2), where ν is the 
Poisson ratio. This approximation is, strictly speaking, only valid if the plate is loaded by a 
line load. For the simply supported beam loaded in a point by a concentrated load the use of 
an effective width has been suggested.7 This adjustment is applied; and increases the 
calculated strain energy by a factor of 1/0.568, as compared to the value found using regular 
beam theory. For a cantilever plate under point loading, Young and Budynas7 present a 
method that has been validated only for cases where the width of the plate (i.e. measured 
along the clamped side) is greater than 4 times the length (the dimension perpendicular to the 
clamped edge). The use of this method leads to a decrease in calculated strain energy of about 
a factor 2 at the maximum applied force, as compared to treating the plate as a beam with the 
adjusted Young’s modulus. We note that these approximations may result in an error of at 
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most a factor of 2. This factor can be disregarded as the strain energy varies orders of 
magnitude upon the boundary conditions 
  
For a simply supported plate, the strain energy, U, can be calculated from the well-known 
equation of deflection of a simply supported beam8 by using the corrected Young’s modulus 
as follows: 
 

𝑈 =  !!!!

!
!!!!

!"!
;   𝐼 = !!!

!"
                  (S18) 

 
where I is the area moment of inertia. 
 
For the cantilever plate, the strain energy, U, can be calculated analogously, in the same way, 
from standard beam theory8 with the corrected Young’s modulus: 
 

𝑈 = !!!!

!
!!!!

!!
                   (S19) 

 
The unimorph configuration examined here is composed of a PZ27 plate perfectly bonded to 
an Al plate of equal width. The neutral axis of the unimorph coincides with the interface 
between the piezoelectric and Al plates. In this way the full volume of the piezoelectric plate 
experiences compressive stress. The Al plate thickness is then given by:8  
 
𝑡!" = 𝑡!"!" 𝑌!"!"/𝑌!"                  (S20) 
 
To calculate the strain energy of this unimorph configuration, we analytically transform the 
bi-material beam into an equivalent beam made entirely of Al. To compensate for the 
difference in Young’s modulus between the PZ27 ceramic and Al, the width of the part of the 
beam formerly made of piezoceramic is increased, by a factor YPZ27/YAl.  
 
A difference in the Poisson’s ratio of the two materials in a unimorph geometry will cause 
non-uniform strain in thickness direction, resulting in in-plane stresses.7 The plate will be 
somewhat stiffer than when the Poisson’s ratios are the same, lowering the strain energy for a 
given force. We note that the difference in the Poisson’s ratio of Al (0.33) and PZ27 ceramics 
(0.35) is small, therefore the effect on the strain energy, for a given force, can be disregarded.   
 
The equations for the strain energy of simply supported and cantilever plates remain valid for 
the unimorph configuration, with the following modifications: for Y and ν the properties of Al 
are used and I is replaced with: 
 

𝐼 = !!"!"
!!"

!!!"!"
!

!
+ !"!"

!

!
                  (S21) 
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5. Piezometer system to measure the stored electrical energy  
 
A piezometer system was built to quantitatively relate the stored electrical energy with the 
piezoelectric charge and voltage coefficients, d and g. As discussed in ESI Section 3, and 
shown in Fig. S1, the elastic, mechanical energy varies over 6 orders of magnitude depending 
on the geometric boundary conditions. The only way to reliably extract the piezoelectric 
constants is by using a circular clamped disc. However, in this geometry there is no shear or 
bending, meaning that there is hardly any stored electrical energy. Therefore the piezometer 
system had to be extremely sensitive; able to detect stored energy in the order of nJ/cm3. Here 
we present the working principle of the piezometer system, the force transfer, the temperature 
control, and the data extraction. We note that the small stored electrical energies can be 
accurately determined because the applied force is accurately applied. Consequently, the 
system developed allows accurate measurement of the stored electrical energy for any 
piezoelectric material.  
 
The schematic representation of the piezometer system, operating under quasi-static load, is 
for completeness reproduced from the main manuscript as Fig. S2a. A photograph of the jig is 
presented in Fig. S2b. An electrical diagram of the system is presented in Fig. S2c.  
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5.1. Working principle of the piezometer system 
 
The piezoelectric sample is placed between two rounded PM300 Piezometer (Piezotest, 
London, UK) calibers (bubble 1, in Fig. S2c). The sample is metallized on both sides, yielding 
a piezoelectric capacitor. An inductive voice coil (bubble 3, Fig. S2c), driven by a dynamic 
electrical signal from an Agilent 33210A function generator (Santa Clara, CA, USA), supplies 
the source of both static and dynamic force, F(ωt) = Fmax f(ωt), where f(ωt) is a periodic 
function (for example, sin(ωt)), t is the time and ω the angular frequency. The polarization of 
the sample is in line with the direction of the force. The dynamic force generates piezoelectric 
charges on the surfaces of the piezoelectric sample, Q(ωt) = Qmax f(ωt).9  
 
To measure the short circuit current, ISC(ωt), the charges Q(ωt) are lead to an ultra-low noise 
amplifier that virtually shorts the sample (zero volts over the sample) and converts the current 
from the sample into a voltage (trans impedance). The gain can be controlled over 4 decades: 
1 MΩ, 10 MΩ, 100 MΩ, and 1 GΩ. The electrical bandwidth is limited with a 3rd order Bessel 
roll off (60 dB per decade) at 5 kHz. A Bessel function is used to get a constant phase delay 
over frequency, resulting in an overshoot free step electrical function response.  
 
To measure the open circuit voltage, VOC(ωt), the amplifier is bypassed with a measurement 
select switch (bubble 4, Fig. S2c). The charges, Q(ωt), are lead along a guarded cable to a 
Keithley 6517b Electrometer (Cleveland, OH, USA). The guard function of the electrometer 
is used to compensate for the capacitance of the coaxial connection between the piezoelectric 
capacitor and the electrometer. 
 
5.2. Force transfer 
 
The force of the voice coil is applied to the sample through a metal rod, isolated by a Macor 
mount, and connected to one of the Berlincourt calibers (bubble 2, Fig. S2c). The Macor 
mount provides electrical and thermal isolation from the samples to the rod, while 
maintaining rigid transfer of the force to the sample. The offset voltage of the function 
generator supplies the static force to the sample. A voltage to current converter (amplifier) 
drives the voice coil up to + or - 20 N with 5 kHz electrical bandwidth. The overall transfer 
equals 2 N/V.  
 
The applied force to the piezoelectric sample is accurately defined by the current through the 
voice coil, multiplied with the coil’s force constant (in N/A). Under static conditions 100% of 
the force from the voice coil is transferred to the surface of the sample. The force constant of 
the voice coil is non-linear when the coil is driven at large strokes. Therefore, to ensure the 
force is always defined within 5%, the maximum sample thickness is limited to 7 mm 
(nominal 2 mm + 5 mm).  
 
Under dynamic conditions any elasticity or backlash, between the voice coil and the contact 
of the mechanical tip of the rod to the sample, will lead to mechanical energy loss. Severe 
losses occur when the movement of the coil exceeds 10 µm movement at a frequency of 110 
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Hz. Due to elasticity and backlash, this excitation introduces a force loss of -0.74 N, as 
calculated from FLoss = -ω2Am, where A is the amplitude of the movement, and m is the 
moving mass of the voice coil, taken as 0.155 kg. The indentation of the mechanical tip of the 
rod, δtip, depends on the elasticity of the piezoelectric material being tested, according to: δtip 
= Ft/AcaliberY, where Acaliber is the contact area of the caliber. Force loss is negligible when 
measuring rigid piezoceramics since the indentation at the maximum dynamic force of 10 N, 
is only 0.04 µm. In rubbery materials a 10 µm indentation already occurs at a dynamic force 
of 0.3 N. Therefore, the measurement frequency is limited to 10 Hz. The maximum force loss 
for the materials measured here, was -0.10 N for rubbery piezoelectric disks measured at 10 N 
dynamic force at 10 Hz. Furthermore, to dampen backlash the mount of the voice coil is 
designed to be extremely rigid. 

 
5.3. Temperature control 
 
To study the effect of temperature with force excitation, the device is equipped with a Peltier 
heating and cooling element, accurately controlled within 1 °C over a temperature range of -
10 °C to +100 °C. The temperature is regulated by a MCPE1-07106NC-S Peltier actuated 
temperature controller, placed beneath a copper plate, sealed to the bottom caliber (bubble 5, 
Fig. S2c). The copper plate mounts a solid state temperature sensor that is used to create a 
uniform temperature distribution. The bottom electrode stack can handle extreme forces 
without compression. To keep the temperature stable, the measured temperature is compared 
with the desired setpoint and the difference is amplified by a PID-controller that drives the 
Peltier element. The Peltier element is able to heat and cool with a ΔT/Δt of 20 K/s over a 
range of -10 °C to 100 °C. 
 
5.4. Data extraction  
 
The periodic input waveform, generated by a function generator, and the piezoelectric output 
waveform, are collected with a DSOX2002A oscilloscope (Tektronix Inc., Berkshire, UK). 
The open circuit output voltage and short circuit output current were measured under 
sinusoidal excitation. The peak-to-peak value of the applied force and output were obtained in 
the frequency domain by using a fast Fourier transform. Only the set frequency was used, and 
all other signals were disregarded. 
 
 
6. Electrical characterization of a piezoceramic PZ27 disk as a function of remanent 

polarization, Pr.  
 
To validate dg as the figure of merit for energy harvesting, we used the intermediate, or 
unsaturated, polarization states of the piezoceramic PZ27 as a model system. The complete 
electrical characterization is presented in Fig. S3, where we show the relative dielectric 
constant, piezoelectric charge coefficient, electromechanical coupling constant, figure of 
merit, mechanical quality factor and dielectric loss, all as a function of remanent polarization.  
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The electromechanical coupling coefficient, kp, and mechanical quality factor, Qm, were 
determined by the IEEE resonance method using an Agilent HP4194A impedance analyzer 
(Santa Clara (CA), USA). The Qm, is evaluated from the resonance peak in the frequency 
dependence of the real part of the impedance, Z', via Qm = fpeak /(f1 - f2), where f1 and f2 are the 
frequencies at which the impedance is equal to Z′!"#$/ 2, and fpeak is the frequency at the 
peak, Z′!"#$. The kp was evaluated from the following equation, where fs and fp are the series 
and parallel resonance frequencies.54 
 

𝑘! =
!
!
!!
!!
𝑡𝑎𝑛 !

!
∆!
!!

                     (S22) 

 
The values of d33 are presented as a function of the remanent polarization in the main text as 
Fig. 2b and here in Fig. S3b. A linear dependence is obtained, with a slope of 1.0 10-9 m2/ N. 
The order of magnitude can be explained as follows. The origin of intrinsic piezoelectricity is 
electrostriction, biased by the spontaneous polarization. The piezoelectric strain of a 
ferroelectric, single domain, single crystal, with a centrosymmetric paraelectric phase, can be 
obtained from expansion of the free energy in a Taylor series10 with respect to the electric 
displacement which is taken as the fundamental variable.11 As odd terms in the expansion 
vanish by symmetry,12 the strain as a function of electric field is given by:13 

	
𝑋!! = 𝑄!!𝐷! = 𝑄!! 𝜀!𝜀!𝐸𝑝 + 𝑃! ! = 2𝑄!!𝜀!𝜀!𝑃!𝐸𝑝 + 𝑄!!𝑃!! + 𝑄!!𝜀!!𝜀!!𝐸!		 											(S23) 
 
where ṕ is a parity function, with values of -1 or +1, to account for the relative orientation of 
electric field and spontaneous polarization, and where we have used that ṕ2 equals unity. Q33 
is the coefficient of electrostriction, a universal property of solid and liquid dielectrics.14, 15 
The first term on the right hand side of eqn. (S23) corresponds to the piezoelectric effect, with 
the piezoelectric charge coefficient, d33, given by 2𝑄!!𝜀!𝜀!𝑃!. The piezoelectric effect can 
thus be understood as the electrostriction biased by the spontaneous polarization. The second 
term, Q33Ps

2, describes the residual, spontaneous strain.  The last term, 𝑄!!𝜀!!𝜀!!𝐸!, is referred 
to as the pure electrostrictive contribution. For ferroelectric materials this term is small and 
typically disregarded. 
 
Of course the piezoceramic PZ27 is not a single crystal, but the analysis gives a first order 
explanation for the dependence of d33 on the remanent polarization. As shown in Fig. S3, the 
relative dielectric constant slowly increases with increasing remanent polarization. We take an 
average value of 1500. For Q33 we use the reported value of 0.02 m4/N2.16 The slope of Fig. 
2b, 2𝑄!!𝜀!𝜀!, then is calculated as 5 10-10 m2/N, about half the extracted experimental value. 
Therefore, about half of the piezoelectric charge coefficient is intrinsic, due to electrostriction 
biased by the spontaneous polarization, and the other half is extrinsic due to e.g. domain wall 
motion.  
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Figure S3. Electrical performance of a thermally de-poled PZ27 ceramic disk as a function of 
poling state, signified by the ferroelectric remanent polarization, PR. (a) Relative dielectric 
constant, εr. (b) Piezoelectric charge coefficient, d33. (c) Electromechanical coupling, kp.  
(d) Figure of merit, d33g33. (e) Mechanical quality factor, Qm. and (f) Dielectric loss, tan δe. 
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7. Technology independent archetypical generator 
 
Here we show that the expression for the output energy derived, automatically leads to the 
expression for the output power of a basic vibration-based generator in resonance, as derived 
in the seminal paper of Roundy.1 
 
We approximate an energy harvester as schematically shown in Fig. S4 by a mass, m, coupled 
to an oscillating spring.1   

 
Figure S4. Schematic of a basic piezoelectric vibration based harvester. Fe(t) is the force 
generated by the mechanical-electrical coupling, ksp is the spring constant, b is the damping 
coefficient, y(t) is the displacement of the input vibrations and z(t) is the spring deflection. 
Reproduced from Roundy.1   
 
We approximate the generated power, Pmax, from the output energy per cycle, times the 
resonance frequency ω. As derived in the submitted manuscript, the output energy per cycle is 
taken as: 1/(4-2k2)*1/2dgX2. We take the prefactor, 1/(4-2k2), equal to ½ and take 100% for 
the electrical-electrical conversion. The applied stress, X, is equal to mQA/a where Q is the 
quality factor, A is the acceleration and a is the area of the cross section of the mass. We take 
for the resonance frequency, ω:1  
 
𝜔! = 𝑌𝑎/𝑚ℎ	 	 	 	 	 	 	 	 	 	 											(S24) 
 
where h is the height of the mass and Y is the Young’s modulus. The maximum output power 
is then derived as:  
 

𝑃!"# =
!
!
𝑑𝑔𝑋! ∗ 𝜔 = !

!
𝑑𝑔  !!

!
!"#
!

!
= !

!
!!

!
 !
!!

𝑄𝐴 ! = !!!(!")!

!!
	              (S25) 

 
where ρ is the specific mass, m/ah. We note that eqn. (S25) is similar to the expression of 
maximum output power as derived in the seminal work of Roundy.1 Furthermore, the same 
expression is used by many other others, such as.17-19 We note that a similar expression, for 
the optimum power of piezoelectric vibrational harvesters with sinusoidal vibrations, has been 
reported by Renaud.20 In this paper a crucial and clear distinction is made between the 
effective electromechanical coupling coefficient, K2, of the complete device, and the 
electromechanical coupling coefficient of the piezoelectric material alone, k2.  



  

15 
 

 
It is remarkable that the formula we derived for the electrical output energy, per sinusoidal 
excitation, automatically leads to a perfect description of the output power of a basic resonant 
piezoelectric harvester. This correspondence strongly supports the analysis presented in the 
main manuscript. 
 
We note that in literature, K2Q is presented as the FOM of a real harvesting device, with K2 as 
the device electromechanical coupling.20-22 However, K2Q is typically the FOM of the 
transformation efficiency of the complete transducer. This FOM is often used to optimize the 
available output power for a given material combination in a harvester. This is not necessarily 
the same as the FOM of the absolute optimal output power, or generation efficiency, which is 
needed to select optimum piezoelectric materials.  
 
8. Strain-driven generator 
 
Our target is to arrive at a piezoelectric generator that delivers sustainable energy to power 
wireless sensor networks. The output energy of a generator is only a fraction of the 
environmental input energy. Therefore, we maximized the output energy under the boundary 
condition of a limited input energy.    
 
On the other hand, energy can be harvested under the boundary condition of basically infinite 
input energy. Not surprisingly, the figure of merit of those generators is completely different. 
A typical example is a generator fixed onto a solid support, which creates not a fixed stress, 
but a fixed strain in the piezoelectric material; for instance a piezoelectric capacitor glued 
onto a wing of an airplane. Bending of the wing leads to a fixed strain, x, independent of the 
type of piezoelectric material. The generated electrical energy in open circuit conditions is 
then: 
 
𝑈!"!#,!"#$ =

!
!
𝑑𝑔𝑋! =  !

!
𝑑𝑔𝑌!𝑥! = 𝑘! ∗ !

!
 𝑌𝑥! = 𝑘! 𝑈!"#! !"#$%                          (S26) 

 
where Y is the Young’s modulus. The figure of merit, for this specific strain-driven 
application which takes the strain as the variable quantity, is then dgY2, or k2Y.  The reason 
can easily be understood. The strain is fixed. The mechanical stored energy scales with the 
Young’s modulus. As k2 is a material parameter, the electrical energy scales with the strain x 
as k2Y.  For this strain-driven application, piezoelectric materials with a large Young’s 
modulus such as ceramics are indicated. Flexible composite materials are no option. The 
larger the Young’s modulus, the larger is the stored mechanical energy for the given stress; 
and, concomitantly, the larger is the stored electrical energy. However, the overall efficiency 
of the harvester is close to zero, as all the vibrational input energy is stored as mechanical 
energy in the support. Therefore, a strain-driven harvester is no option to efficiently harvest 
energy from ambient vibrations.  
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9. Electrical-electrical conversion efficiency of piezoelectric energy harvesting with a 
resistive load  

 
A resistive load, Rload, is placed in parallel to the piezoelectric capacitor to harvest the stored 
electrical energy. The corresponding equivalent electric circuit is presented in Fig. S5. The 
piezoelectric capacitor is treated as a current source, Iin, actuated with an applied force over 
time, F(ωt) = Fmax f(ωt), where f(ωt) is a periodic function (for example, sin(ωt)), where t is 
the time and ω the angular frequency. The developed current, Iin, is the sum of the current due 
to the internal capacitance, Icap, and the external load, Iload.  
 

 
Figure S5. Equivalent circuit of a piezoelectric capacitor in parallel with a resistive load. 
 
The harvested output power, P, of the circuit is related to the square of the output voltage, 
Vharvested, and the value of the resistive load through: 
  

𝑃 = !!!"#$%&$'
!

!!"#$
=

!!"!!"#$
!!!!"!"#$%

!

!!"#$
                 (S27) 

 

where Cpiezo is the internal capacitance of the piezoelectric material, and j is −1 . 
 
As an example, the power output of a PZ27 ceramic, actuated with a sinusoidal excitation at 
10 Hz and 3 N peak to peak, is presented in Fig. S6a. The piezoelectric disk has a capacitance 
of 1145 pF. The calculated power output c.f. eqn. (S27) takes the form of a parabola, at values 
of the resistive load between 106 and 108 Ω. A good agreement is obtained between the 
measured values and the calculation. The maximum power point is calculated at a resistive 
load of 13.9 MΩ. It occurs when the value of the resistive load, Rload optimal, is equal to the 
impedance of the piezoelectric capacitor, at Rload optimal = 1 / ωCpiezo. This is confirmed by 
calculating the relative power as a function of the ratio between the resistive load and the 
impedance of the internal capacitance, presented in Fig. S6b.  
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Figure S6. Energy harvesting output of a piezoelectric capacitor. (a) The power output of a 
PZ27 ceramic as a function of the resistive load, actuated with a sinusoidal excitation at 10 
Hz, and 3 N peak to peak. The red line is calculated with eqn. (S27). The open circles 
represent measurements of a PZ27 ceramic disk. (b) The dependence of the relative power 
output on the ratio between the applied resistive load, R, and the impedance of the internal 
capacitance, Z =1 / jωC, calculated with eqn. (S26), with normalized x-axes to RloadωC.  
 
To identify the electrical-electrical conversion efficiency, the power obtained with the 
resistive load can be compared to the internal power in open circuit, Popen, where Vopen(ωt) is 
the voltage in open circuit Vopen(ωt) = Vmax f(ωt). 
 

𝑃!"#$ =
!!"#$

!

!

!!!"#$%
                   (S28) 

 
The term ‘open circuit power’ is thermodynamically not defined. However, here we used this 
artificial term to clearly distinguish between the internal energy stored in the piezoelectric 
transducer, Popen, and the energy that can be externally dissipated in the load, Pharvested. 

The maximum power is obtained when RωCpiezo is 1, or the value of the resistive load is equal 
to 1 / ωCpiezo (Fig. S6), and is equal to 50% Popen. In summary, at Rload = 1 / ωCpiezo the 
relationship between the open circuit voltage (taken from eqn. (S28)) and the harvested 
voltage (taken from eqn. (S27)) reduces to: 
 
𝑉!!"#$%&$' =  !

!
𝑉!"#$                                                 (S29) 

 
The powers scale with the square of the voltage, meaning that:  
 

𝑃!!"#$%&$' =  !
!

!
𝑃!"#$ =

!
!
𝑃!"#$                             (S30) 

 
or, half of the internal open circuit power is transferred to harvested power when using a 
resistive load. 
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