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1. Sample preparation and characterization
ZnO:Al samples were deposited on borosilicate glass substrates by using different deposition 

techniques: ALD, AP-SALD and sputtering. For the films prepared with our AP-SALD home-made 
system, diethylzinc ((C2H5)2Zn; DEZ, Aldrich), trimethylaluminum ((CH3)3Al; TMA, Aldrich) and 
water vapor were used as precursors for zinc, aluminum, and oxygen, respectively. The substrate 
temperature was maintained at 200 °C. The samples were maintained at the distance of 150 µm from 
the gas injector and oscillated under the injector at 10 cm/s to deposit over a maximum area of 5 cm 
x 5 cm. More details about this deposition technique can be found in our previous works.1,2 The as-
deposited samples prepared by AP-SALD showed a low mobility (< 1 cm2V-1s-1) because of adsorbed 
oxygen at grain boundaries during deposition in atmospheric conditions, which limits electron 
transport through grain boundaries.3–5 In our work, we performed a post-deposition treatment of the 
AP-SALD samples under vacuum at 200 °C for 1 h. During the treatment, the samples were subjected 
to UV light (wavelength: 365 nm, power: 15 W, distance between sample and light source: 15 cm) to 
reduce the oxygen trap density at the grain boundary of ZnO doped films, as reported in previous 
investigations.3,6,7 For the films prepared by the ALD technique, we used a TFS 500 system with the 
same type of precursors. The deposition temperature was set at 200 °C while the pressure in the 
deposition chamber was maintained at 1 mbar. For the films prepared by DC sputtering, the system 
Jusung 7003–Soultera with a sputtering power of 200 W was used. A target containing 2% Al2O3 and 
98% ZnO was used. The depositions were carried out at 200 °C in a pure Argon atmosphere.

The surface morphology of different films was analyzed by scanning electron microscopy 
(SEM-FEG Environmental FEI QUANTA 250) and atomic force microscopy (AFM Digital 
Instruments Dimension 3100). Atomic structure and crystallinity were studied by X-ray diffraction 
(XRD, Bruker D8 Advance) in Bragg-Brentano configuration; using Cu-Kα radiation (λ= 
0.15406 nm) in the 2θ range of 20°−80° (0.011°/step, 2 s/step). Transmission electron microscopy 
(TEM) images were obtained using a JEOL JEM-2010 microscope operating at 200 kV. Hall mobility 
and carrier concentration were analyzed by using a home-made Hall Effect analyzer with a magnetic 
field strength of 5000 G and temperature control from 30 K to 300 K by using a liquid helium cryostat. 
During Hall Effect measurements, the samples were kept at a pressure of 0.003 mbar. 

The structural analysis including AFM, SEM, XRD, and TEM show that ZnO:Al samples 
prepared by the AP-SALD technique have a high crystallinity with a mean grain size of 46 nm for a 
205 nm-thick film (see Figure 3 below and the associated discussion). Since the AFM technique 
allows only accessing the biggest grains on the top of the films, therefore, the mean grain size used 
for our mobility calculation is estimated to be around one half of the grain size measured by AFM, 
i.e. 20 nm for a 200 nm thick film.

2. Validity of (Wentzel–Kramers–Brillouin) WKB approximation
The electron wave functions in two neighbor grains can be solved by using the 1D time-

independent Schrödinger equation:
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Where ћ is the reduced Plank constant, Ψ(x) is the electron wave-function and V(x) is the 
potential energy at the grain boundary. In the case of a constant potential, the solution of the 
Schrödinger equation can take the form of a simple plane wave: , where  ikxx Ae 

is a constant. The WKB approximation assumes that if the potential V(x) changes   2 /n xk m E V ћ 

slowly with x, the wave function solution of the Schrödinger equation are also of the form of simple 
plane wave: , with .   iS xx Ae     S x xk x

Replacing this expression to the equation (1), we obtain:

          (2)      
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Because the wave vector k(x) is proportional to the square root of the potential V(x), which is 
assumed to be slowly varying. This means that the second derivative of is negligible    xk x S x
compared to (k(x))2, thus we can write: 
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In the case of tunneling through a grain boundary barrier , so   xV x E

 and the wave function can be expressed as:   2 /n xk i m V x E ћ 

  (4)    
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If now we consider an incoming wave  to the grain boundary barrier V(x) and a transmitted Ѱ1

wave  after passing through the barrier, with two turning points x1 and x2 corresponding to the Ѱ2

positions where the electron kinetics energy Ex equal to the potential V(x). The tunneling probability 
is thus given by:

 ,      (5)   
    

2 2
2 2

x
1 1 1

2T E  2
x

n x
x

x
m V x E dx

x ћ


   
   xE V x

To obtain this expression, we have assumed that the potential varies slowly with x, which is a large 
assumption in our case of sharp parabolic potential barrier. The variation of the potential is more 
important for higher doping level. In addition, the W KB approximation breaks down at regions where 
the electron kinetics energy approaches the potential barrier, which makes the wave vector 
approaches to zero but its derivative is not. It should be also noted that the WKB assumption leads to 
a tunneling probability of unity for the electron energies higher than the grain boundary barrier, 
whereas it should not be as in the quantum-mechanical point of view
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3. Calculation of tunneling transfer matrix
We discretized the grain boundary potential barrier into N segments with N + 1 equidistant 

points (x1, x2… xi, xi+1… xN+1), where x1 and xN+1 correspond to the bottom of the conduction band on 
each side. The potential V(xi) corresponding to each point xi follows the parabolic solution of the 
Poisson’s equations. 

The solutions of the 1D time-independent Schrödinger’s equation in the interior of the grains, 
where the potential is zero, have the plane wave forms:

(6.a)  1,   L Lik x ik x
L L Lx a e b e x x  

 (6.b)  1,   R Rik x ik x
R R R Nx a e b e x x

  

where ΨL, kL, kR, ΨR are the wave functions and the wave vectors attributed to the left and right 
grains. We have neglected the applied bias on one side so that we can write the wave vectors as 
follows: . We assume that bR = 0. The objective of the next part is to calculate  2 /L R n xk k m E ћ 

the total tunneling probability: .
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The linear function Ui of potential in the segment (xi, xi+1), 2 ≤ i ≤ N, is expressed as: 
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In order to use the Airy function solution, we need to adjust the 1D time-independent 
Schrödinger’s equation by changing the variable from x to  as follows: 𝜉𝑖

  (8)   
1
3

2

2 i xi
i i i

i

V x Em K x x
ћ K


      

   

and the x-independent derivative: , where mi denotes the electron effective mass 
1
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in the considered region. In a first approximation, we assume that mi is constant when tunneling 
through the grain boundary barrier and takes the value of the effective mass at the bottom of the 
conduction band, m0.

The 1D time-independent Schrödinger’s equation in the segment (xi, xi+1) can thus be rewritten 
as:

 (9)
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The solution for this type of equation can be expressed as a linear combination of Airy 
functions, Ai and Bi: 

               (10)      1 ,    i i i i i i ix a Ai b Bi x x x     
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The similar solution for the wave function in the neighbor segment (xi-1, xi) should take the 
same form, as follows:  

      (11)     1 1 1 1 1 1 ,    i i i i i i ix a Ai b Bi x x x          

Now the boundary conditions at the interface between two adjacent segments (xi-1, xi) and (xi, 
xi+1) require the continuity of the wave functions, as well as its derivative in the position xi:

         (12)       1 1 1 1i i i i i i i ia Ai b Bi a Ai b Bi        
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By using the property of the Airy functions:  and then        ' ' 1Ai z Bi z Ai z Bi z   

combining the equations (12) and (13) under the matrix form, we obtain:
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Where Ti is transfer matrix related to the electron tunneling process through the segment (xi, 
xi+1) and calculated as follows:

 (15)
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Equation (14) is valid only for i = (2...N-1). Similarly, the transfer matrices in the segment (x1, 
x2) and (xN, xN+1) can be expressed as follows: 
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The total tunneling transfer matrix (called Ttotal) is calculated by multiplying the transfer 
matrices in each layer (xi, xi+1), 1 ≤ i ≤ N, which are already calculated and shown in the equations 
(15), (16) and (17):

     (18)11 12
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Finally, with the assumption that bR = 0, we obtain the total tunneling probability as follows:
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Figure 1: Carrier mobility, tunneling transmission probability, and associated Matlab running time calculated for electrons at 
the Fermi level as function of the number of segments used for the discretization of the grain boundary potential barrier. n = 2×1020 
cm-3, Nt = 6×1013 cm-2, L = 20 nm.

Concerning the discretization used for the grain boundary barrier, the larger the number of 
segments the more accurate the calculated result. However, the calculation time will be also longer. 
Therefore, we fixed a critical value for the number of segments Sc as follows:

               (20)
1 0.0001c c

c

S S

S

T T
T
  

where TSc and TSc+1 are the tunneling transmission probability of electrons at the Fermi level, 
calculated with the AFTMM model by using respectively two numbers of segments: Sc and (Sc + 1). 
Figure 1 shows the carrier mobility at 300 K, the tunneling transmission probability and the 
calculation time as function of the number of segments. When the number of segments varies from 2 
to 80, the running time of the model AFTMM to calculate the value of mobility goes from 0.2 s to 
4.5 s. By applying the criteria defined above, the critical value Sc is determined to be 30, which 
corresponds to a calculation time of 1.8 s per value. This means that to study the effect of one 
parameter (temperature, grain size…) on the charge transport through grain boundary, it will only 
take a few minutes. In this work, we have fixed the number of segments at 30.

4. Effect of grain size on carrier transport
Obviously, if the carrier transport is mainly dominated by ionized impurity scattering, the effect 

of grain size is not important. However, when grain boundary scattering is one of the main factors 
limiting the carrier mobility, a high grain boundary density is detrimental for the carrier transport. In 
order to study the crystalline quality of ZnO:Al films deposited by AP-SALD technique, different 
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structural analysis techniques were used. Figure 2 shows AFM images of AP-SALD ZnO:Al films 
deposited at 200 °C with various thicknesses. We observed that the thicker films have the bigger grain 
size. Figure 3a shows that when increasing film thickness from 205 nm to 525 nm, the mean grain 
size measured with AFM increases significantly from 46 nm to 69 nm. Since the AFM technique 
allows only accessing the biggest grains on the top of the films, therefore, we assume that the mean 
grain size L used for our mobility calculation is estimated to be around one half of the grain size 
measured by AFM, i.e. 20 nm for a 200 nm thick film. 

Figure 2: AFM images of AP-SALD ZnO:Al films deposited at 200 °C with various thicknesses, inset: corresponding top-
view AFM images.

The XRD patterns of the same set of samples shown in Figure 3b illustrate the same growth 
orientation for all films. This is again confirmed by the similar surface morphology studied by SEM 
imaging, as shown in Figure 4.a-d. In addition, Figure 4.e-g show respectively dark-field TEM image, 
high-resolution TEM images of 500nm-thick ZnO:Al film deposited on Silicon substrate at 200 °C. 
The XRD, SEM and TEM images clearly show that our films deposited by APSALD technique have 
a good crystalline quality. Consequently, a low electron mobility in the case of AP-SALD ZnO:Al 
films should be related to a high electron-trap density at the grain boundaries rather than ingrain 
scattering.
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Figure 3 : a) mean grain size measured with AFM and b) X-Ray Diffraction patterns of AP-SALD ZnO:Al films deposited at 200 °C 
with various thicknesses.

Figure 4 : a-d) SEM micrographs of AP-SALD ZnO:Al films deposited on glass at 200 °C with various thicknesses. e) Dark-field 
TEM image, f-g) high-resolution TEM images of 500nm-thick ZnO:Al film deposited by AP-SALD on Silicon substrate at 200 °C 

Figure 5 shows non-negligible variation of the Hall carrier concentration when the film 
thickness increases. On the one hand, since Nt depends on the deposition conditions and post-
treatment, which are kept the same in this case, the trap density can therefore be assumed to be 
constant and independent of the grain size. On the other hand, the density of grain boundary is higher 
in the case of thin films (since average grain size increases for thicker films, as shown by SEM or 
AFM), and thus in this case the trap density per volume is more important. Hence, the fraction of free 
electrons captured in the grain boundaries is higher for thinner films. These arguments allow to 
explain the variation of the carrier concentration versus film thickness. Finally, the electron mobility 

a) b)
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is also observed to increase with the film thickness, which is attributed to an increase of effective 
conducting volume and a lower grain boundary scattering. 
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Figure 5 : Hall resistivity (-■-, left axis), electron mobility (-▲-, right axis) and carrier concentration (-●-, right axis) as a function 
of film thickness of AP-SALD ZnO:Al films deposited at 200 °C with various thicknesses.

5. Parameters used for conductivity modeling
In order to obtain a complete model for conductivity in highly doped ZnO:Al films, we used 

parameters reported in literature to describe scatterings due to impurities, phonon-electron 
interactions and dislocations, as shown in Table 1: 

Table 1: Material parameters of ZnO:Al used for the simulation

Parameters [unit] Values References

Effective mass me divided by m0 at the bottom
of the conduction band

0.29 8

Nonparabolicity parameter C [eV-1] 0.35 – 0.65 9,10,11

Static dielectric constant ɛs divided by ɛ0 8.85 11

High-frequency dielectric constant ɛ∞ divided by ɛ0 3.66 11

Piezoelectric constant P⟘ 0.21 12

Energy of the longitudinal optical phonon [meV] 72.1 11

Average longitudinal elastic constant [GPa] 200 8

Deformation potential Eac [eV] 3.8 8

Dislocation density Ndisl [cm-2] 1×1012 13,14,15

Compensation ratio K 0.1 – 0.15 16

6. Effect of C, K, and Nt to the fits
Based on the previous work Young et al,21 Look et al,22 and T-Thienprasert et al.38, we assumed 

that the nonparabolicity C can vary from 0.35 to 0.65 and the compensation ratio K can vary between 
0.1 and 0.15 for a range of carrier concentrations in [1.3×1019 – 4.6×1020 cm-3]. Since C and K increase 
when the carrier density n increases, thus, as a first approximation, we assumed that C and K vary 
linearly with the Hall carrier density nHall. 



10

In order to study the effect of C, K and Nt, we take the example of the sample prepared by RF 
sputtering shown in the manuscript, which have carrier density of 1.1 ×1020 cm-3 and mobility of 17.8 
cm2V-1s-1 at 300 K. In the manuscript, we showed that the best fit of experimental data to our AFTMM 
model occurs at [C ; K ; Nt] = [0.5 ; 0.12 ; 3.9 ×1013 cm-2]. Figure 6 shows the variation of the mobility 
at 300 K when varying C, K and Nt around theirs standard values. We observed that varying C or K 
(up to 100 %) does not affect very much the mobility while a slight variation of Nt affect significantly 
the mobility. This affirmation becomes more valid when the carrier transport is mainly dominated by 
the grain boundaries. Additionally, this strong dependency of mobility versus the trap density at grain 
boundaries confirms the accuracy of our fitting results shown in table 3 in the manuscript.
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Figure 6: Effect of the nonparabolicity parameter C, the compensation ratio K and the trap density at grain boundaries Nt to 
the mobility at 300 K. L = 20 nm, n = 1.1 x 1020 cm-3. Red: Nt varies from 3 x 1013 cm-2 to 5 x 1013 cm-2 while C and K are kept 

constant at their standard values. Blue: C varies from 0.3 to 0.6 while Nt and K are kept constant at their standard values. Black: K 
varies from 0.05 to 0.2 while Nt and C are kept constant at their standard values.
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