Materials Horizons

Supplementary Materials for

Growth of 2 cm metallic porous TiN single crystals

Guoming Lin,¹ Shaobo Xi,¹ ChangchangPan,¹ Wenglie Lin² & Kui Xie^{1,*}

¹Key Lab of Design & Assembly of Functional Nanostructure, and Fujian Provincial Key Lab of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China.

²State Key Lab of Structure Chemistry, Fujian Institute of Research on the structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, China.

*Corresponding author. Email: kxie@fjirsm.ac.cn.

Fig. S1 XRD patterns and SEM image of porous TiN crystals grown on SrTiO₃. With 110 orientation (a, c and 111 orientation (b, d), at 333 mbar and a flow rate of 600 sccm of NH_3 for 20 hours at the growth temperature of 1300 °C. * stands for the diffraction peak of TiN crystals.

Fig. S2 XRD patterns and SEM image of porous TiN crystals grown on TiO₂. With 100 orientation (a, c) and 110 orientation (b, d), at 67 mbar and a flow rate of 1000 sccm of NH₃ for 20 hours at the growth temperature of 950 °C.

Fig. S3 Transformation characteristic TiN single crystals in relation to parent $SrTiO_3$ and TiO_2 crystals under nitridation conditions. The $SrTiO_3$ parent crystals (a) with [100] planes have been successfully converted into TiN crystals with [100] planes. The $SrTiO_3$ parent crystals (c and c) with [110] and [111] planes only harvested polycrystalline TiN. The TiO_2 parent crystals (d, e and f) with [100], [110] and [001] planes have been successfully converted into TiN crystals with [111], [100] and [110] planes, respectively

Fig. S4: Cross-sectional TEM characterization and corresponding four SEAD patterns at different locations of porous TiN film grown on a SrTiO3 (100) substrate. The scale bar is 1 μ m.

Fig. S5: Cross-sectional TEM characterization and corresponding four SEAD patterns at different locations of porous TiN film grown on a TiO_2 (001) substrate. The scale bar is 1 μ m.

Fig. S6 XPS spectra of porous TiN, SrTiO₃ and TiO₂ single crystal. (a) Ti 2p peaks of porous TiN single crystal. (b) N 1s peak of porous TiN single crystal. (c) Ti 2p peaks of SrTiO₃ single crystal. (d) Ti 2p peaks of TiO₂ single crystal.

Fig. S7 XRD patterns of porous TiN crystals grown on (100) SrTiO₃ at 333 mbar and NH₃ flow rate of 600 sccm for 20 h at different temperature. (a) 1200 °C. (b) 1250 °C. (c) 1300 °C. (d) 1350 °C.

Fig. S8 SEM images of porous TiN crystals grown on (100) SrTiO₃ at 333 mbar and a flow rate of 600 sccm of NH₃ for 20 hours at different growth temperatures. (a) 1200 °C. (b) 1250 °C. (c) 1300 °C. (d) 1350 °C.

Fig. S9 (a) The crystal quality of TiN with increasing NH_3 flow rate from 100 sccm to 950 sccm at 1300 °C; (b) the crystal quality of TiN with increasing system pressure from 67 mbar to 1050 mbar at NH_3 flow rate of 950 sccm and 1300 °C; Adding appropriate ratio of H_2 gas to the ammonia flow was found to improve decomposition of SrTiO₃ and accelerate the conversion of TiN (c) without affecting the crystal quality (d).

Substrate	Orientation	Detected Phase	Orientation	Single Crystal	Porosity
SrTiO ₃	100	TiN	100	Y	Y
SrTiO ₃	110	TiN	Polycrystalline	Ν	Y
SrTiO ₃	111	TiN	Polycrystalline	Ν	Y
TiO ₂	100	TiN	111	Y	Y
TiO ₂	110	TiN	100	Y	Y
TiO ₂	001	TiN	110	Y	Y

Table S1. Transformation characteristic TiN single crystals in relation to parent SrTiO₃ and TiO₂ crystals under nitridation conditions.