Supporting Information for

Tin dioxide quantum dots coupled with graphene enabled high-performance

bulk-silicon Schottky photodetector

Zhaoqiang Zheng^{1†}, Jiandong Yao^{2†}, Lianfeng Zhu³, Wei Jiang³, Bing Wang⁴,

Guowei Yang²* and Jingbo Li^{1, 5, 6}*

¹School of Materials and Energy, Guangdong University of Technology, Guangzhou,

510006, Guangdong, P. R. China.

²State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China.

³Graduated School at Shenzhen, Tsinghua University, Shenzhen, 518055, Guangdong, P. R. China.

⁴Institute of Micro-nano Optoelectronic Technology, Shenzhen Key Lab of Micronano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen, 518060, Guangdong, P. R. China.

⁵State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.

⁶State key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, Guangdong, P. R. China.

[†] These authors contributed equally to this work.

*Corresponding authors: stsygw@mail.sysu.edu.cn and jbli@semi.ac.cn

Figure S1. Schematic diagrams showing the fabrication process of the SnO₂-QDs/graphene/Si heterojunction photodetector.

Figure S2. (a) Dark *I-V* characteristic of the graphene/Si photodetector. By fitting the I-V curve with equation 1, the reverse saturation current (I_s) is estimated to be 5.74 μ A. As the area of the device is 300*300 μ m², the temperature is 300 K, the effective Richardson constant is 112 A cm⁻² K⁻², based on equation 2, the Schottky barrier height (Φ_b) is calculated to be 0.19 eV. (b) Dark *I-V* characteristic of the SnO₂-QDs/graphene/Si photodetector and fitting with equation 1. The Schottky barrier height (Φ_b) is calculated to be 0.21 eV. (c) *I-V* curves of the graphene/Si photodetector in the dark and under 532 nm light illumination with various light intensities.

Figure S3. Voltage-dependent photocurrent upon illumination with 532 nm light: (a) graphene/Si photodetector; (b) SnO₂-QDs/graphene/Si hybrid photodetector.

Figure S4. Photocurrent evolved with the thickness of the SnO_2 -QDs film under the same incident intensity (29 μ W/cm²). The graphene/Si device without SnO₂-QDs (the thickness of the SnO₂-QDs film is 0 nm) is also shown for comparison.

Figure S5. Light intensity dependent external quantum efficiency (EQE) of the graphene/Si and hybrid SnO₂-QDs/graphene/Si photodetectors at $V_{ds} = -5$ V.

Figure S6. Stability of the SnO₂-QDs/graphene/Si photodetector. (a) I-V characteristics of the SnO₂-QDs/graphene/Si photodetector before and after exposing to ambient environment for two months. (b) Photoswitching curves of the SnO₂-QDs/graphene/Si photodetector before and after exposing to ambient environment for two months.

Figure S7. UV-vis-NIR absorption curve of the SnO₂-QDs.

Figure S8. Reflection spectra of the graphene/Si film and SnO₂-QDs/graphene/Si film.

Figure S9. The energy band diagrams for graphene and n-Si in the dark and light.