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EXPERIMENTAL SECTION

Finite element method model

FEM is used to solve for mechanical properties including toughness and strength of hierarchical 
composites. The FEM model and simulation method are described in more detail in our previous 
work1 and also summarized in this section. A total of 100,000 hierarchical composites are 
randomly generated, which have an edge crack of 25% of the specimen width in the y-direction. 
The toughness of a hierarchical composite in our system is defined as the area underneath its 
stress-strain curve before the element at the crack tip fails; this area is proportional to the energy 
needed to initiate crack propagation. The definition of toughness as the area under the stress-
strain curve is not flaw independent; this metric only captures the toughness of this particular 
configuration of edge crack and would be different for cracks of different sizes and orientations. 
This definition is used because we are trying to solve this condition of an edge crack problem. As 
a result, whenever we are comparing geometries in our finite element or machine learning model, 
we always compare with the same grid size and same crack size, location, and orientation. The 
elements used in this work are linear elastic four-node elements, with an assumption that the 
dominating failure mechanisms occurs in the linear elastic regime, supported by experimental 
evidence2, 3. The soft to stiff stiffness ratio is set to 0.01 and is chosen to be sufficiently low to 
prevent elastic stress mismatch. Displacement boundary conditions are applied along the x-
direction to simulate a tensile test and plane stress conditions are used. The Young’s modulus of 
the stiff material is 1 GPa with a failure strain of 10%. The toughness of the stiff and soft 
materials is chosen to be equal as we aim to study geometry effects rather than material effects 
on the composite properties. Symmetry in the geometry is assumed because the edge crack is 
located at the center of the composite system and the loading condition is symmetric. The strain 
measured at the crack tip is used to calculate the toughness and strength; once the strain reaches 
the failure strain of the element, the material is considered failed and the toughness and strength 
(maximum stress) of the composite can be determined. The modulus of a composite is defined as 
the effective stiffness of the sample composed of soft and stiff materials. Additional details as to 
calculation of the mechanical properties are discussed in our previous work1. 

Machine learning approach

The ML calculations are performed using TensorFlow4 running on an NVIDIA Tesla K20m 
GPU. Specifically, convolution neural networks (CNN), a widely used deep learning method for 
image recognition and other imaging-related tasks, are adopted in this work, with more details in 
our previous work5. Our ML model consists of two convolutional layers which have 32 features 
in the first layer and 64 features in the second layer using a 3 by 3 patch. A stride of one with 
zero padding is used in the ML model. The weights are initialized with some randomness, added 
with a small bias, and passed through the ReLU activation function. 256 neurons are assigned in 
the fully-connected layer to balance the accuracy and computational cost, shown in more detail 
in Fig. S2. Note that the effects of the other hyperparameters are not investigated since searching 
for optimal ML architectures is beyond the scope of this work but remains for future 
opportunities. Specifics as to how the NRMSD value is calculated are discussed in our previous 
work 5. The generation of new designs is done by using a self-learning-based sampling method. 
In each sampling loop, 100,000 samples with different designs are evaluated by the ML model. 



These 100,000 samples include two parts. The first part is a random sampling that consists of 
90,000 samples generated randomly; the second part is a self-learning sampling that consists of 
10,000 samples generated based on the result of the previous sampling loop. More specifically, 
the probabilities of each element being U1, U2, and U3 unit cells are determined based on the 
occurrence of these unit cells in the top 100 samples from the previous loop. To prevent the 
results from readily converging to a local minimum, a noise probability is added. The probability 
of element i being a U1 unit cell in the self-learning sampling is:

𝑃1,𝑖 =
1
3

𝑁𝑟 + (1 ‒ 𝑁𝑟)𝑃̅1,𝑖

where  is a noise ratio that is determined randomly from a range of 0.1 to 0.5 in each sampling 𝑁𝑟

loop, and  is the probability of element i being a U1 unit cell in the top 100 samples in the 𝑃̅1,𝑖

previous sampling loop. A similar function is applied for U2 and U3 unit cells. The random 
sampling part allows the ML model to explore a broader design space and the purpose of the 
self-learning sampling part is to find the better designs faster without the need of searching 
through the entire design space. 

3D-printing and experiments

The samples are fabricated using a Stratasys multi-material 3D-printer with two base materials, 
TangoBlackPlus (soft) and VeroMagenta (stiff). The two base materials are acrylic-based 
photopolymers that are printed simultaneously by two print heads as liquids and cured by 
ultraviolet light during the printing process. The detailed material properties are discussed in the 
work of Gu et al.6 and Libonati et al.2 and a table of the material properties is in Table S1. The 
sample preparation and tensile testing procedures are similar to our previous work2, 6, where 
aluminium grips are glued with epoxy to the specimen’s end for testing. The dimensions of the 
samples were 76 by 76 by 2 mm in addition to 25 mm-wide buffer regions for the grips on the 
two opposite sides. Additionally, a notch that is 25% of the specimen width is incorporated into 
the design during the printing process, and then the printed notch is sharpened with a razor blade. 
Tensile tests on our samples are performed using an Instron 5582 universal testing machine with 
a 100 kN load cell (Figure S3). The displacement rate in the experiment was 2 mm/min for all 
samples tested (three or more for each design). Samples were sprayed with black and white paint 
before testing for use in digital image correlation (DIC). DIC is carried out using the VIC-2D 
software created by Correlated Solutions. DIC measures displacements between the black and 
white dots during testing and permits visualization of the strain field at each instant of time. 



Supplementary figures

Figure S1: Performance comparison of training data and ML generated designs. Modulus 
ratio is the modulus normalized by the highest modulus value in the training data. Toughness 
ratio is the toughness normalized by the highest toughness value in the training data. The ML 
designs are generated using the training loops of 1,000 (shown by the green dots) and 1,000,000 
(shown by the red dots). Envelopes show that mechanical properties of the ML generated designs 
exceed those of the training data.



Figure S2: Training and testing results from ML models using different numbers of 
neurons. Blue dots represent training data, yellow dots represent testing data, and red curve 
represents y = x line.  a) A model using 128 neurons has NRMSD = 0.4309 for training data and 
NRMSD = 0.6464 for testing data. b) A model using 256 neurons has NRMSD = 0.2978 for 
training data and NRMSD = 0.4926 for testing data. c) A model using 512 neurons has NRMSD 
= 0.1782 for training data and NRMSD = 0.3850 for testing data. d) A model using 1024 neurons 
has NRMSD = 0.1571 for training data and NRMSD = 0.3514 for testing data. The model using 
256 neurons is used in this work to balance the accuracy and computational costs. 



Figure S3: Tensile testing experimental setup. Representative sample with aluminum grips for 
testing (left) and tensile testing setup using Instron machine (right). 



Supplementary table

Table S1: Material properties information for 3D-printed materials (VeroMagenta and 
TangoBlackPlus)6.
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