How to quantify isotropic negative thermal expansion: magnitude, range, or both? Supplementary Information

Chloe S. Coates,¹ and Andrew L. Goodwin^{1*}

31st August 2018

¹Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K. ²Department of Chemistry, University College London, Gower Street, London WC1E 6BT, United Kingdom *Electronic address: andrew.goodwin@chem.ox.ac.uk The following tables enumerate the data used in Fig. 5 of the main text, separated by compound class. The coefficients of thermal expansion, α_V are listed, alongside the temperature window of NTE, ΔT and the experimental method used to collect lattice expansion data. PXRD = powder X-ray diffraction, NPD = neutron powder diffraction, SCXRD = single-crystal X-ray diffraction, D = dilatometry, SG = strain gauge measurements. In some cases either α_V or ΔT values were not reported, in which case: either (i) α_V was calculated from values given in Supporting Information or (ii) the experimental data were digistised and α_V subsequently calculated[S1]. In both cases α_V was calculated from variable temperature data using PASCal[S2].

Compound	$\alpha_V (\mathrm{MK}^{-1})$	T_1 (K)	T_2 (K)	$\Delta T \left(\mathbf{K} \right)$	χ_{α} (%)	Exp.	Ref.
ReO ₃	-3.0(3)	15	294	279	-0.08	NPD	[S3]
Ag_2O^*	-21.0(6)	40	470	430	-0.90	PXRD/NPD	[S4]
Cu ₂ O	-7.2	9	240	231	-0.17	PXRD	[S5]
ZrW_2O_8	-26.1	0.3	1050	1049.7	-2.74	PXRD/NPD	[S6, S7]
$Zr_{0.7}V_{1.33}Mo_{0.67}O_{6.73}$	-12.03	103	673	570	-0.69	PXRD/D	[S8]
SiO ₂ (cristobalite)	-6.9(6)	1429	1977	548	-0.38	PXRD	[S9]
HfW_2O_8	-26.4	90	300	210	-0.55	PXRD	[S10]
$ZrMo_2O_8$	-15.0	11	573	562	-0.84	PXRD/NPD	[S11]
HfMo ₂ O ₈ [‡]	-12	77	573	496	-0.60		[S12]
ThP_2O_7	-10.5	473	1174	701	-0.74	PXRD	[S13]
CeP_2O_7	-5.7	718	1078	360	-0.21	PXRD	[S14]
$CaMn_7O_{12}$	-85.92	430	488	58	-0.50	PXRD	[S15]
${ m ScF_3}^\dagger$	-12.3	10	1100	1090	-1.34	PXRD/NPD	[S16]
MnZrF ₆	-13.41	300	673	373	-0.50	PXRD	[S17]
FeZrF ₆	-9.72	300	673	373	-0.36	PXRD	[S17]
$Sc_{0.9}Al_{0.05}Fe_{0.05}F_3$	-4.8	300	800	500	-0.24	PXRD	[S18]
$Sc_{0.85}Al_{0.05}Fe_{0.1}F_3$	-2.31	300	800	500	-0.12	PXRD	[S18]
$Li_{0.04}(Sc_{0.94}Fe_{0.06})F_3$	-2.25	150	425	275	-0.06	NPD	[S19]
$Li_{0.02}(Sc_{0.97}Fe_{0.03})F_3$	-7.77	150	425	275	-0.21	NPD	[S19]
$(Sc_{0.9}Fe_{0.1})F_3$	-15.03	150	425	275	-0.41	NPD	[S19]
${\rm CaNbF_6}^\dagger$	-37.92	10	900	890	-3.37	PXRD/NPD	[S20]
MgZrF ₆	-8	125	500	375	-0.30	PXRD	[S20]
CaZrF_6^\dagger	-21.0144	10	1022	1012	-2.13	PXRD/NPD	[S21]
${\rm CaHfF_6}^\dagger$	-49.5534	10	285	275	-1.36	NPD	[S21]
$\mathrm{Fe}_{0.7}\mathrm{Ni}_{0.3}\mathrm{ZrF}_6$	-5.97	300	675	375	-0.22	PXRD	[S22]
$(Sc_{0.9}Zr_{0.1})F_{3+\delta}^{*}$	-23(2)	300	650	350	-0.81	PXRD	[S23]
$Sc_{0.75}Y_{0.25}F_{3}{}^{1*}$	-10.39(12)	250	800	550	-0.57	PXRD	[S24]
TiZrF ₆	-18.27	300	623	323	-0.59	PXRD	[S25]

Table S1: Oxide and fluoride frameworks

* Data digitised online and α_V calculated using PASCal [S2]

 $^{\dagger}\alpha_{V}$ calculated from data in S.I.

 ‡ Values quoted from Ref. S26, experimental method unknown

Compound	$\alpha_V (\mathrm{M}\mathrm{K}^{-1})$	T_1 (K)	T_2 (K)	ΔT (K)	χ_{α} (%)	Exp.	Ref.
Zn(CN) ₂	-50.7	25	375	350	-1.77	SCXRD	[S27]
$Cd(CN)_2$	-61.2	150	375	225	-1.38	SCXRD	[S27]
Cd(CN) ₂ (single-network)	-100.5	170	375	205	-2.06	SCXRD	[S28]
FeCo(CN) ₆	-4.41	4.2	300	295.8	-0.13	PXRD	[S29]
$Zn_3[Fe(CN)_6]_2$	-118.8	123	298	175	-2.08	PXRD	[S30]
$Cu_3[Fe(CN)_6]_2$	-59.7	123	298	175	-1.04	PXRD	[S 30]
$Mn_3[Co(CN)_6]_2$	-87.6	123	298	175	-1.53	PXRD	[S 30]
$Fe_3[Co(CN)_6]_2$	-58.8	123	298	175	-1.03	PXRD	[S30]
$Co_3[Co(CN)_6]_2$	-119.1	123	298	175	-2.08	PXRD	[S 30]
$Ni_3[Co(CN)_6]_2$	-90	123	298	175	-1.58	PXRD	[S 30]
$Cu_3[Co(CN)_6]_2$	-60	123	298	175	-1.05	PXRD	[S 30]
$Zn_3[Co(CN)_6]_2$	-89.1	123	298	175	-1.56	PXRD	[S 30]
MnPt(CN) ₆	-19.74	100	400	300	-0.59	PXRD	[S31]
FePt(CN) ₆	-12	100	400	300	-0.36	PXRD	[S 31]
CoPt(CN) ₆	-4.8	100	400	300	-0.14	PXRD	[S 31]
NiPt(CN) ₆	-3.06	100	400	300	-0.09	PXRD	[S31]
ZnPt(CN) ₆	-10.59	100	400	300	-0.32	PXRD	[S31]
CdPt(CN) ₆	-30.06	100	400	300	-0.90	PXRD	[S31]
$Cs_{0.91}Zn[Fe(CN)_6]_{0.97} \cdot 0.4H_2O$	-12.3	100	300	200	-0.25	PXRD	[S32]
CsCd[Fe(CN) ₆]·0.5H ₂ O	-26.4	100	300	200	-0.53	PXRD	[S32]
$Rb_{0.78}Fe[Fe(CN)_6]_{0.83} \cdot 2.8H_2O$	-6.3	100	300	200	-0.13	PXRD	[S32]
$Rb_{0.64}Zn[Fe(CN)_6]_{0.88} \cdot 2.3H_2O$	-17.7	100	300	200	-0.35	PXRD	[S32]

 Table S2: Cyanide framework

Framework	Topology	$\alpha_V (\mathrm{MK}^{-1})$	T_1 (K)	T_2 (K)	ΔT (K)	χ_{lpha} (%)	Exp.	Ref.
FAU	Zeolite Y (siliceous)	-12.6	25	572	547	-0.69	PXRD	[S33]
LTA	ITQ-29	-22.11	100	300	200	-0.44	PXRD	[S34]
LTA	Na-A (dehyd)	-6.34	100	300	200	-0.13	PXRD	[S35]
LTA	Ag-A (dehyd)	-7.68	100	300	200	-0.15	PXRD	[S34]
FAU	SiY	-12.06	298	923	625	-0.75	PXRD	[S36]
FAU	NaX (dry)	-5.28	423	723	300	-0.16	PXRD	[S37]
	NaY (hyd)	-3.87	461	613	152	-0.06	PXRD	[S37]
LTA	NaA (dry)	-8.94	373	723	350	-0.31	PXRD	[S37]
MTN	dodecasil 3C	-5.1	463	1002	539	-0.27	PXRD	[S38]
FAU	Na-zeolite X*	-3.3(6)	25	293	268	0.09	PXRD	[S39]
FAU	SAPO-37	-10.71	303	773	470	-0.50	PXRD	[S40]

Table S3: Zeolites

* Numerical data obtained from paper and α_V calculated using PASCal.[S2]

Compound	$\alpha_V (\mathrm{M}\mathrm{K}^{-1})$	T_1 (K)	T_2 (K)	ΔT (K)	χ_{lpha} (%)	Exp.	Ref.
HKUST-1	-12.3(3)	80	500	420	-0.52	SCXRD/PXRD	[S41]
MOF-14	-18.5	3	395	392	-0.72	PXRD/NPD	[S42]
MOF-5	-39.3(3)	80	500	420	-1.65	PXRD	[S43]
d-UiO-66(Hf) $n = 5$	-70(2)	473	653	180	-1.26	PXRD	[S44]
d-UiO-66(Hf) $n = 4.5$	-81(4)	473	653	180	-1.45	PXRD	[S44]
d-UiO-66(Hf) $n = 4$	-95(2)	473	653	180	-1.71	PXRD	[S44]
d-UiO-66(Hf) $n = 3.5$	-88(5)	473	653	180	-1.58	PXRD	[S44]
d-UiO-66(Hf) $n = 3$	-94(5)	473	653	180	-1.68	PXRD	[S44]
d-UiO-66(Hf) $n = 2.5$	-97(4)	473	653	180	-1.75	PXRD	[S44]
		1 0					

Table S4: Metal-Organic Frameworks

n = defect concentration

Compound	$\alpha_V (\mathrm{MK}^{-1})$	<i>T</i> ₁ (K)	T_2 (K)	ΔT (K)	χ_{α} (%)	Exp.	Ref.
(Ga _{0.7} Cu _{0.3}) _{0.85} Mn _{0.15} NMn ₃	-436.2	210	230	20	-0.87	SG	[S45]
$(Ga_{0.7}Cu_{0.3})_{0.8}Mn_{0.2}NMn_3$	-176.1	170	215	45	-0.79	SG	[S45]
$(Ga_{0.7}Cu_{0.3})_{0.75}Mn_{0.25}NMn_3$	-57.3	10	175	165	-0.95	SG	[S45]
$(Ga_{0.7}Cu_{0.3})_{0.7}Mn_{0.3}NMn_3$	-68.4	10	125	115	-0.79	SG	[S45]
$(Ga_{0.7}Cu_{0.3})_{0.69}Mn_{0.31}NMn_3$	-76.2	10	90	80	-0.61	SG	[S45]
$(Ga_{0.7}Cu_{0.3})_{0.68}Mn_{0.32}NMn_3$	-77.1	10	80	70	-0.54	SG	[S45]
Ag _{0.7} Mn _{0.3} NMn ₃	-171	213	233	20	-0.34	SG	[S46]
Ag _{0.6} Mn _{0.4} NMn ₃	-50.1	175	212	37	-0.19	SG	[S46]
$Ag_{0.5}Mn_{0.5}NMn_3$	-15.3	135	185	50	-0.08	SG	[S46]
Ga _{0.9} Cr _{0.1} N _{0.83} Mn ₃	-138	256	318	62	-0.86	SG	[S47]
Ga _{0.8} Cr _{0.2} N _{0.83} Mn ₃	-67.8	151	232	81	-0.55	SG	[S47]
$Ga_{0.8}Mn_{0.2}N_{0.8}Mn_3$	-153	294	339	45	-0.69	SG	[S48]
$Ga_{0.75}Mn_{0.25}N_{0.8}Mn_3$	-126	255	309	54	-0.68	SG	[S48]
$Ga_{0.7}Mn_{0.3}N_{0.8}Mn_3$	-75	206	279	73	-0.55	SG	[S48]
$Zn_{0.5}Ge_{0.5}N(Mn_{0.96}Fe_{0.04})_3$	-75	316	386	70	-0.53	SG	[S49]
$Zn_{0.55}Sn_{0.45}N_{0.85}C_{0.1}B_{0.05}Mn_3$	-111	270	325	55	-0.61	SG	[S50]
$Zn_{0.5}Sn_{0.5}N_{0.85}C_{0.1}B_{0.05}Mn_3$	-90	280	340	60	-0.54	SG	[S50]
$Cu_{0.53}Ge_{0.47}NMn_3$	-36	280	365	85	-0.31	SG	[S49]
$Cu_{0.5}Ge_{0.5}NMn_3$	-48	267	342	75	-0.36	SG	[S49]
$Cu_{0.5}Sn_{0.5}NMn_3$	-84	296	332	36	-0.30	D/PXRD	[S51]
$Cu_{0.6}Si_{0.15}Ge_{0.25}NMn_3$	-48	120	184	64	-0.31	SG	[\$52]
Ga _{0.6} Ge _{0.4} NMn ₃	-55.2	370	430	60	-0.33	D/PXRD	[S53]
$Ga_{0.75}Si_{0.25}NMn_3$	-42	272	420	148	-0.62	PXRD	[S54]
$Ga_{0.7}Ge_{0.3}N_{0.88}C_{0.12}Mn_3$	-54	197	319	122	-0.66	SG	[S49]
Ga _{0.8} Ge _{0.2} NMn ₃	-104.7	300	370	70	-0.73	D/PXRD	[S53]
$Ga_{0.9}Sn_{0.1}NMn_3$	-82.5	279	338	59	-0.49	D	[S55]
$Zn_{0.4}Sn_{0.6}NMn_3$	-114	410	440	30	-0.34	D/PXRD	[S51]
$Zn_{0.4}Sn_{0.6}N_{0.85}C_{0.15}Mn_3$	-69	270	336	66	-0.46	D/PXRD	[S51]
$Zn_{0.9}Ge_{0.1}NMn_3$	-684	202	222	20	-1.37	PXRD	[S56]
$Zn_{0.7}Ge_{0.3}NMn_3$	-93	299	373	74	-0.69	PXRD	[S56]
$Zn_{0.5}Ge_{0.5}NMn_3$	-21.45	348	448	100	-0.21	PXRD	[S56]
$Zn_{0.8}Mn_{0.2}NMn_3$	-174.6	94	155	61	-1.07	SG	[S57]
$Zn_{0.75}Mn_{0.25}NMn_{3}$	-87.6	78	152	74	-0.65	SG	[S57]
$Zn_{0.7}Mn_{0.3}NMn_3$	-49.5	52	150	98	-0.49	SG	[S57]

Table S5: Magnetic NTE

Compound	$\alpha_V (\mathrm{M}\mathrm{K}^{-1})$	T_1 (K)	T_2 (K)	ΔT (K)	χ_{α} (%)	Exp.	Ref.
Zn _{0.8} Co _{0.2} NMn ₃	-165.9	125	180	55	-0.91	PXRD	[S58]
$Zn_{0.6}Co_{0.4}NMn_3$	-93	180	230	50	-0.47	PXRD	[S58]
$Zn_{0.5}Co_{0.5}NMn_3$	-50.1	150	240	90	-0.45	PXRD	[S58]
$Zn_{0.3}Co_{0.7}NMn_3$	-20.4	153	223	70	-0.14	PXRD	[S58]
$La(Fe_{0.96}Co_{0.04})_{11.4}Al_{1.6}$	-50.19	138	290	152	-0.76	SG	[S59]
$La(Fe_{0.94}Co_{0.06})_{11.4}Al_{1.6}$	-49.65	150	325	175	-0.87	SG	[S59]
$La(Fe_{0.92}Co_{0.08})_{11.4}Al_{1.6}$	-38.88	160	350	190	-0.74	SG	[S59]
$LaFe_{10.5}CoSi_{1.5}$	-78.3	240	350	110	-0.86	D	[S60]
$LaFe_{10.6}Si_{2.4} \\$	-15.12	77	300	223	-0.34	D	[S60]
$LaFe_{11.3}Co_{0.2}Si_{1.5}$	-167.4	200	274	74	-1.24	D	[S60]
$LaFe_{11.5}Si_{1.5}$	-45.6	77	300	223	-1.02	D	[S60]
$LiGaCr_4S_8^*$	-14.7	12	111	99	-0.15	PXRD/NPD	[S61]
$LaPrFe_{10.7}Co_{0.8}Si_{1.5}$	-97.5	200	300	100	-0.98	SG	[S62]
$La_{0.9}Pr_{0.1}Fe_{10.7}Co_{0.8}Si_{1.5}$	-101.4	200	300	100	-1.01	SG	[S62]
$La_{0.7}Pr_{0.3}Fe_{10.7}Co_{0.8}Si_{1.5}$	-110.4	200	300	100	-1.10	SG	[S62]
$La_{0.5}Pr_{0.5}Fe_{10.7}Co_{0.8}Si_{1.5}$	-115.5	200	300	100	-1.16	SG	[S62]
$LaFe_{11.5}Si_{1.5}Co_{1.6}$	-149.1	180	250	70	-1.04	SG/PXRD	[S63]

Table S6: Magnetic NTE, continued

Data digitised online and α_V calculated using PASCal [S2]

Compound	$\alpha_V (\mathrm{MK}^{-1})$	T_1 (K)	T_2 (K)	ΔT (K)	χ_{lpha} (%)	Exp.	Ref.
YbInCu ₄ *	-57.9	9	80	71	-0.41	PXRD	[S64]
$Sm_{0.55}Y_{0.45}S^{\ast}$	-65.4	9	250	241	-1.58	PXRD	[S65]
$Sm_{0.7}Y_{0.3}S^{*}$	-96.9	9	250	241	-2.34	PXRD	[S65]
$SrCu_3Fe_4O_{12}{}^\dagger$	-40.23	170	270	100	-0.40	PXRD	[S66]
$LaCu_{3}Fe_{3.25}Mn_{0.75}O_{12} \\$	-66(3)	300	340	40	-0.26	PXRD	[S67]
$Ca_{0.2}Sr_{0.8}Cu_{3}Fe_{4}O_{12}{}^{*}$	-30(3)	191	271	80	-0.24	PXRD	[S68]
$Ca_{0.4}Sr_{0.6}Cu_{3}Fe_{4}O_{12}{}^{*}$	-23(3)	180	240	60	-0.14	PXRD	[S68]
$SrCu_3Fe_{3.5}Mn_{0.5}O_{12}$	-19.2(6)	240	350	110	-0.21	PXRD	[S69]
$SrCu_3Fe_3MnO_{12}$	-17.1(15)	300	370	70	-0.12	PXRD	[S69]

 Table S7: Charge transfer NTE

* Data digitised online and α_V calculated using PASCal [S2]

S1 References

- [S1] A. Rohatgi, WebPlotDigitizer, https://automeris.io/WebPlotDigitizer, 2018.
- [S2] M. J. Cliffe and A. L. Goodwin, J. Appl. Crystallogr., 2012, 45, 1321-1329.
- [S3] E. E. Rodriguez, A. Llobet, T. Proffen, B. C. Melot, R. Seshadri and P. B. Littlewood, J. Appl. Phys., 2009, 105, 114901.
- [S4] B. J. Kennedy, Y. Kubota and K. Kato, Solid State Commun., 2005, 136, 177–180.
- [S5] A. Sanson, F. Rocca, G. Dalba, P. Fornasini, R. Grisenti, M. Dapiaggi and G. Artioli, *Phys. Rev. B*, 2006, 73, 214305.
- [S6] J. S. O. Evans, T. A. Mary, T. Vogt, M. A. Subramanian and A. W. Sleight, *Chem. Mater.*, 1996, 8, 2809–2823.
- [S7] T. A. Mary, J. S. O. Evans, T. Vogt and A. W. Sleight, Science, 1996, 272, 90-92.
- [S8] M. Zhang, Y. Mao, J. Guo, W. Zhou, M. Chao, N. Zhang, M. Yang, X. Kong, X. Kong and E. Liang, *RSC Adv.*, 2017, 7, 3934–3940.
- [S9] E. Bourova and P. Richet, Geophys. Res. Lett., 1998, 25, 2333–2336.
- [S10] Y. Yamamura, N. Nakajima and T. Tsuji, Phys. Rev. B, 2001, 64, 184109.
- [S11] C. Lind, A. P. Wilkinson, Z. Hu, S. Short and J. D. Jorgensen, Chem. Mater., 1998, 10, 2335–2337.
- [S12] C. A. Kennedy, M. A. White, A. P. Wilkinson and T. Varga, Appl. Phys. Lett., 2007, 90, 151906.
- [S13] G. Wallez, P. E. Raison, N. Dacheux, N. Clavier, D. Bykov, L. Delevoye, K. Popa, D. Bregiroux, A. N. Fitch and R. J. M. Konings, *Inorg. Chem.*, 2012, 51, 4314–4322.
- [S14] K. M. White, P. L. Lee, P. J. Chupas, K. W. Chapman, E. A. Payzant, A. C. Jupe, W. A. Bassett, C.-S. Zha and A. P. Wilkinson, *Chem. Mater.*, 2008, 20, 3728–3734.
- [S15] K. Gautam, D. K. Shukla, S. Francoual, J. Bednarcik, J. R. L. Mardegan, H.-P. Liermann, R. Sankar, F. C. Chou, D. M. Phase and J. Strempfer, *Phys. Rev. B*, 2017, 95, 144112.
- [S16] B. K. Greve, K. L. Martin, P. L. Lee, P. J. Chupas, K. W. Chapman and A. P. Wilkinson, J. Am. Chem. Soc., 2010, 132, 15496–15498.
- [S17] L. Hu, J. Chen, J. Xu, N. Wang, F. Han, Y. Ren, Z. Pan, Y. Rong, R. Huang, J. Deng, L. Li and X. Xing, J. Am. Chem. Soc., 2016, 138, 14530–14533.
- [S18] F. Han, J. Chen, L. Hu, Y. Ren, Y. Rong, Z. Pan, J. Deng and X. Xing, J. Am. Ceram. Soc., 2016, 99, 2886–2888.
- [S19] J. Chen, Q. Gao, A. Sanson, X. Jiang, Q. Huang, A. Carnera, C. G. Rodriguez, L. Olivi, L. Wang, L. Hu, K. Lin, Y. Ren, Z. Lin, C. Wang, L. Gu, J. Deng, J. P. Attfield and X. Xing, *Nat. Commun.*, 2017, 8, 14441.
- [S20] B. R. Hester, J. C. Hancock, S. H. Lapidus and A. P. Wilkinson, Chem. Mater., 2017, 29, 823-831.
- [S21] J. C. Hancock, K. W. Chapman, G. J. Halder, C. R. Morelock, B. S. Kaplan, L. C. Gallington, A. Bongiorno, C. Han, S. Zhou and A. P. Wilkinson, *Chem. Mater.*, 2015, 27, 3912–3918.
- [S22] J. Xu, L. Hu, L. Wang, J. Deng, J. Chen and X. Xing, Acta Phys. Chem. Sin., 2018, 34, 339-343.

- [S23] T. Wang, J. Xu, L. Hu, W. Wang, R. Huang, F. Han, Z. Pan, J. Deng, Y. Ren, L. Li, J. Chen and X. Xing, *Appl. Phys. Lett.*, 2016, **109**, 181901.
- [S24] C. R. Morelock, B. K. Greve, L. C. Gallington, K. W. Chapman and A. P. Wilkinson, J. Appl. Phys., 2013, 114, 213501.
- [S25] C. Yang, Y. Zhang, J. Bai, B. Qu, P. Tong, M. Wang, J. Lin, R. Zhang, H. Tong, Y. Wu, W. Song and Y. Sun, J. Mater. Chem. C, 2018, 6, 5148–5152.
- [S26] C. Lind, A. P. Wilkinson, C. J. Rawn and E. A. Payzant, J. Mater. Chem., 2001, 11, 3354–3359.
- [S27] A. L. Goodwin and C. J. Kepert, Phys. Rev. B, 2005, 71, 140301.
- [S28] A. E. Phillips, A. L. Goodwin, G. J. Halder, P. D. Southon and C. J. Kepert, *Angew. Chem. Int. Ed.*, 2008, 47, 1396–1399.
- [S29] S. Margadonna, K. Prassides and A. N. Fitch, J. Am. Chem. Soc., 2004, 126, 15390–15391.
- [S30] S. Adak, L. L. Daemen, M. Hartl, D. Williams, J. Summerhill and H. Nakotte, *J. Solid State Chem.*, 2011, 184, 2854–2861.
- [S31] K. W. Chapman, P. J. Chupas and C. J. Kepert, J. Am. Chem. Soc., 2006, 128, 7009-7014.
- [S32] T. Matsuda, J. E. Kim, K. Ohoyama and Y. Moritomo, Phys. Rev. B, 2009, 79, 172302.
- [S33] M. P. Attfield and A. W. Sleight, Chem. Commun., 1998, 601-602.
- [S34] T. Carey, A. Corma, F. Rey, C. C. Tang, J. A. Hriljac and P. A. Anderson, *Chem. Commun.*, 2012, 48, 5829–5831.
- [S35] T. Carey, C. C. Tang, J. A. Hriljac and P. A. Anderson, Chem. Mater., 2014, 26, 1561–1566.
- [S36] L. Leardini, S. Quartieri, G. Vezzalini and R. Arletti, Micro. Meso. Mater., 2015, 202, 226-233.
- [S37] M. Noack, M. Schneider, A. Dittmar, G. Georgi and J. Caro, Micro. Meso. Mater., 2009, 117, 10–21.
- [S38] S. H. Park, R. W. Große-Kunstleve, H. Graetsch and H. Gies, Stud. Surf. Sci. and Catal., 1997, 105, 1989– 1994.
- [S39] J. W. Couves, R. H. Jones, S. C. Parker, P. Tschaufeser and C. R. A. Catlow, J. Phys.: Condens. Matter, 1993, 5, 329.
- [S40] V. R. Buragadda, L. Yu, F. G. Alabarse, A. Haidoux, C. Levelut, A. van der Lee, O. Cambon and J. Haines, *RSC Adv.*, 2013, 3, 9911–9915.
- [S41] Y. Wu, A. Kobayashi, G. Halder, V. Peterson, K. Chapman, N. Lock, P. Southon and C. Kepert, Angew. Chem. Int. Ed., 2008, 47, 8929–8932.
- [S42] Y. Wu, V. K. Peterson, E. Luks, T. A. Darwish and C. J. Kepert, Angew. Chem. Int. Ed., 2014, 53, 5175– 5178.
- [S43] N. Lock, Y. Wu, M. Christensen, L. J. Cameron, V. K. Peterson, A. J. Bridgeman, C. J. Kepert and B. B. Iversen, J. Phys. Chem. C, 2010, 114, 16181–16186.
- [S44] M. J. Cliffe, J. A. Hill, C. A. Murray, F.-X. Coudert and A. L. Goodwin, *Phys. Chem. Chem. Phys.*, 2015, 17, 11586–11592.

- [S45] X. Guo, P. Tong, J. Lin, C. Yang, K. Zhang, M. Wang, Y. Wu, S. Lin, W. Song and Y. Sun, *Scripta Mater.*, 2017, **128**, 74–77.
- [S46] J. C. Lin, P. Tong, W. Tong, S. Lin, B. S. Wang, W. H. Song, Y. M. Zou and Y. P. Sun, Appl. Phys. Lett., 2015, 106, 082405.
- [S47] X. Guo, P. Tong, J. Lin, C. Yang, K. Zhang, S. Lin, W. Song and Y. Sun, Front. Chem., 2018, 6, 75.
- [S48] X. G. Guo, J. C. Lin, P. Tong, M. Wang, Y. Wu, C. Yang, B. Song, S. Lin, W. H. Song and Y. P. Sun, Appl. Phys. Lett., 2015, 107, 202406.
- [S49] K. Takenaka and H. Takagi, Appl. Phys. Lett., 2005, 87, 261902.
- [S50] T. Hamada and K. Takenaka, J. Appl. Phys., 2011, 109, 07E309.
- [S51] K. Takenaka, K. Asano, M. Misawa and H. Takagi, Appl. Phys. Lett., 2008, 92, 011927.
- [S52] R. Huang, L. Li, F. Cai, X. Xu and L. Qian, Appl. Phys. Lett., 2008, 93, 081902.
- [S53] L. Huiqing, S. Ying, D. Sihao, S. Kewen, W. Lei, Z. Wenjun, H. Huimin, D. Shenghua and W. Cong, J. Am. Ceram. Soc., 2017, 100, 5739–5745.
- [S54] S. Ying, W. Cong, W. Yongchun, C. Lihua, N. Man and L. Fusheng, J. Am. Ceram. Soc., 2010, 93, 650–653.
- [S55] Z. Liqiang, W. Daolian, T. Jie, L. Wen, W. Wei, H. Rongjin and L. Laifeng, *Rare Metal Mater. Eng.*, 2014, 43, 1304–1307.
- [S56] Y. Sun, C. Wang, Y. Wen, K. Zhu and J. Zhao, Appl. Phys. Lett., 2007, 91, 231913.
- [S57] J. Lin, P. Tong, W. Tong, Y. Zou, C. Yang, F. Zhu, X. Zhang, L. Li, M. Wang, Y. Wu, S. Lin, W. Song, X. Zhu and Y. Sun, *Scripta Mater.*, 2018, **152**, 6–10.
- [S58] L. Chu, L. Ding, C. Wang, M. Li, Y. Guo and Z. Liu, Materials, 2018, 11, 286.
- [S59] Y. Zhao, R. Huang, S. Li, W. Wang, X. Jiang, Z. Lin, J. Li and L. Li, *Phys. Chem. Chem. Phys.*, 2016, 18, 20276–20280.
- [S60] R. Huang, Y. Liu, W. Fan, J. Tan, F. Xiao, L. Qian and L. Li, J. Am. Chem. Soc., 2013, 135, 11469–11472.
- [S61] G. Pokharel, A. F. May, D. S. Parker, S. Calder, G. Ehlers, A. Huq, S. A. J. Kimber, H. S. Arachchige, L. Poudel, M. A. McGuire, D. Mandrus and A. D. Christianson, *Phys. Rev. B*, 2018, 97, 134117.
- [S62] W. Li, R. Huang, W. Wang, J. Tan, Y. Zhao, S. Li, C. Huang, J. Shen and L. Li, *Inorg. Chem.*, 2014, 53, 5869–5873.
- [S63] S. Li, R. Huang, Y. Zhao, W. Wang and L. Li, Phys. Chem. Chem. Phys., 2015, 17, 30999–31003.
- [S64] B. Kindler, D. Finsterbusch, R. Graf, F. Ritter, W. Assmus and B. Lüthi, Phys. Rev. B, 1994, 50, 704–707.
- [S65] P. A. Alekseev, J.-M. Mignot, E. V. Nefeodova, K. S. Nemkovski, V. N. Lazukov, N. N. Tiden, A. P. Menushenkov, R. V. Chernikov, K. V. Klementiev, A. Ochiai, A. V. Golubkov, R. I. Bewley, A. V. Rybina and I. P. Sadikov, *Phys. Rev. B*, 2006, **74**, 035114.
- [S66] Y. Ikuya, T. Kazuki, O. Kenya, H. Naoaki, K. Jungeun, T. Naruki, T. Ryoji, M. Masafumi, N. Norimasa, I. Toru, I. Tetsuo, K. Kenichi, T. Masaki and T. Mikio, *Angew. Chem. Int. Ed.*, 2011, **50**, 6579–6582.
- [S67] I. Yamada, S. Marukawa, M. Murakami and S. Mori, Appl. Phys. Lett., 2014, 105, 231906.

- [S68] I. Yamada, K. Shiro, N. Hayashi, S. Kawaguchi, T. Kawakami, R. Takahashi and T. Irifune, J. Asian Ceram. Soc., 2017, 5, 169–175.
- [S69] I. Yamada, S. Marukawa, N. Hayashi, M. Matsushita and T. Irifune, Appl. Phys. Lett., 2015, 106, 151901.