Electronic Supplementary Information

Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromic

Hao Liang,^a Ran Li,^a Ce Li,^c Chengyi Hou,^{*a} Yaogang Li,^{*b} Qinghong Zhang^b and Hongzhi Wang^a

a. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials

Science and Engineering, Donghua University, Shanghai 201620, P. R. China. E-mail: hcy@dhu.edu.cn

b. Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, P. R. China. E-mail: yaogang li@dhu.edu.cn

с.

College of Mechanical Engineering, Donghua University, Shanghai 201620, P. R. China.

Keywords: electrochromic, metal-organic framework, nickel oxide, thermolysis, carbon

Contents

Supplementary discussion
S1. Thermogravimetric analysis
S2. Calculation process of D_w and D_{CV}
Supplementary Figures
Fig. S1 TGA traces of Ni@C and Ni-MOF3
Fig. S2 Cross-sectional SEM images of Ni-MOF, Ni@C and hierarchical-porous NiO@C films4
Fig. S3 SEM images of A-10, A-30 and A-60 films4
Fig. S4 HRTEM image of Ni@C4
Fig. S5 Raman spectrum of Ni@C and hierarchical-porous NiO@C5
Fig. S6 TEM images of A-10, A-30 and A-605
Fig. S7 Elemental mapping of A-10, A-30 and A-606
Fig. S8 X-ray photoelectron spectroscopy (XPS) of different films6
Fig. S9 Digital photographs of HA-25 film electrode at different states7
Fig. S10 Schematic illustration for HA-25-based number "6" film7
Fig. S11 In situ transmittance responses (at 550 nm) for HA-20 and HA-30 films in 1 M KOH solution measured
between 0 and 0.6 V bias7
Fig. S12 In situ transmittance responses (at 550 nm) for A-10, A-30 and A-60 films in 1 M KOH solution measured
between 0 and 0.6 V bias
Fig. S13 The Nyquist plots and corresponding simulation results (fitting lines) for HA-20 and HA-30 films
measured in 1 M KOH solution
Fig. S14 The Nyquist plots and corresponding simulation results (fitting lines) for A-10 and A-30 films measured in
1 M KOH solution
Fig. S15 Cyclic voltammogram curves of different films9
Fig. S16 Coloration efficiency of HA-20 and HA-30 films in 1 M KOH solution10
Fig. S17 Coloration efficiency of A-10 and A-30 films in 1 M KOH solution10
Supplementary Tables
Table S1 Percentage of each element of different NiO@C films from X-ray photoelectron spectroscopy (XPS)11
Table S2 Fitted parameters according to electrochemical impedance spectroscopy of different NiO@C films11

Table S3 Comparison of D _w and D _{cv} for different NiO@C films	12
Table S4 Comparison of EC performances of NiO and other inorganic EC materials	12
Supplementary Movies	12
Supplementary references	13

Supplementary discussion

S1. Thermogravimetric analysis:

As shown in Fig. S1, the TGA trace of Ni@C shows a trend of increases initially and decreases afterwards. The weight gain from 290 °C to 390 °C owing to the process of metal oxidation; The followed weight loss after 390 °C because of the carbon decomposition.

For Ni-MOF: The first weight loss (about 5%) before 200 °C due to the volatilization of embedded solvent molecules; Then the second weight loss (about 50%) from 340 °C to 390 °C related to the rapid decomposition of Ni-MOF.

S2. Calculation process of D_w and D_{CV} :

Calculation process for D_w according to the equation S1 (Fick's law).

$$D_w = R^2 T^2 / 2S^2 n^4 F^4 C^2 \sigma^2$$

(S1)

(S2)

Where R is the gas constant, T is the absolute temperature, S is the effective working area, F is the Faraday constant, n is the number of electrons, C is molar concentrations of ions and σ represents the Warburg constant.

Calculation process for D_{cv} according to the equation S2 (Randles–Sevcik equation).

$$i_p = 2.687 \times 10^5 \times n^{3/2} \times D_{cv}^{1/2} \times C \times S \times v^{1/2}$$

In the above equation, i_p is the peak current density, n is the number of electrons, C is the concentration of active OH⁻ ions, S is the surface area and v is the potential sweep rate.

Supplementary Figures

Fig. S1 TGA traces of (a) Ni@C powder, (b) Ni-MOF powder at the heating rate of 10 °C/ min in air atmosphere.

Fig. S2 Cross-sectional SEM images of (a) Ni-MOF, (b) Ni@C and (c) hierarchical-porous NiO@C layer on FTO glass.

Fig. S3 SEM images of (a, d) A-10, (b, e) A-30 and (c, f) A-60 films.

Fig. S4 HRTEM image of Ni@C.

Fig. S5 Raman spectrum of (a) Ni@C and (b) hierarchical-porous NiO@C.

Fig. S6 TEM images of (a, b) A-10, (c, d) A-30 and (e, f) A-60.

Fig. S7 Elemental mapping of (a) A-10, (b) A-30 and (c) A-60.

Fig. S8 X-ray photoelectron spectroscopy (XPS) of (a) PTA-Ni-MOF; (b) HA-15; (c) HA-20; (d) HA-25; (e) HA-30; (f) HA-60; (g) A-10; (h) A-30 and (i) A-60.

Fig. S9 Digital photographs of HA-25 film electrode at (a) bleached state and (b) colored state.

Fig. S10 Schematic illustration for HA-25-based number "6" film.

Fig. S11 In situ transmittance responses (at 550 nm) for HA-20 and HA-30 films in 1 M KOH solution measured between 0 and 0.6 V bias.

Fig. S12 In situ transmittance responses (at 550 nm) for A-10, A-30 and A-60 films in 1 M KOH solution measured between 0 and 0.6 V bias.

Fig. S13 The Nyquist plots and corresponding simulation results (fitting lines) for HA-20 and HA-30 films measured in 1 M KOH solution.

Fig. S14 The Nyquist plots and corresponding simulation results (fitting lines) for A-10 and A-30 films measured in 1 M KOH solution.

Fig. S15 Cyclic voltammogram curves of (a) HA-15; (b) HA-20; (c) HA-30; (d) HA-60; (e) A-10; (f) A-30 and (g) A-60 films measured in 1M KOH solution. Scan rates: 10, 20, 30, 40 and 50 mV/s.

Fig. S16 Coloration efficiency of HA-20 and HA-30 films in 1 M KOH solution.

Fig. S17 Coloration efficiency of A-10 and A-30 films in 1 M KOH solution.

Supplementary Tables

Films	Atomic% (C)	Atomic% (O)	Atomic% (Ni)
HA-15	29.74	39.51	30.75
HA-20	19.15	43.59	37.26
HA-25	11.42	46.44	42.13
HA-30	6.01	47.97	46.02
HA-60	3.96	48.54	47.5
A-10	5.05	47.36	47.59
A-30	4.42	48.03	47.55
A-60	3.77	48.62	47.61

Table S1 Percentage of each element of different NiO@C films from X-rayphotoelectron spectroscopy (XPS).

Table S2 Fitted parameters according to electrochemical impedance spectroscopy of different NiO@C films.

Films	R _s (Ω)	R _{ct} (Ω)	σ (Ω×s ^{-1/2})
HA-15	4.03	4.24	38.65
HA-20	4.11	6.82	42.50
HA-25	4.26	7.59	45.90
HA-30	4.40	12.51	48.16
HA-60	4.49	15.36	51.09

A-10	4.67	42.65	113.53
A-30	4.75	45.14	118.69
A-60	4.81	45.78	123.04

Table S3 Comparison of D_w of different NiO@C films calculated from Fick's law and D_{cv} calculated from Randles–Sevcik equation.

Films	$D_{\rm w}$ calculated from Fick's law (cm²/s)	D_{cv} calculated from R–S equation (cm ² /s)
HA-15	1.85×10 ⁻⁷	1.37×10 ⁻⁷ /2.94×10 ⁻⁸
HA-20	1.53×10 ⁻⁷	1.08×10 ⁻⁷ /2.55×10 ⁻⁸
HA-25	1.31×10 ⁻⁷	9.72×10 ⁻⁸ /1.76×10 ⁻⁸
HA-30	1.19×10 ⁻⁷	9.55×10 ⁻⁸ /1.57×10 ⁻⁸
HA-60	1.06×10 ⁻⁷	9.08×10 ⁻⁸ /1.44×10 ⁻⁸
A-10	2.14×10 ⁻⁸	1.21×10 ⁻⁸ /7.73×10 ⁻⁹
A-30	1.97×10 ⁻⁸	9.93×10 ⁻⁹ /7.12×10 ⁻⁹
A-60	1.82×10 ⁻⁸	9.64×10 ⁻⁹ /6.89×10 ⁻⁹

Table S4 Comparison of EC performances of NiO and other inorganic EC materials.

EC materials	Coloring/bleaching time	CE	Cycling stability	Reference
				S
NiO	7.2/6.7 s	76 cm ² C ⁻¹	2200 cycles	1

This work	0.46/0.25 s	113.5 cm ² C ⁻¹	90.1% after 20000 cycles	
Ni/Mg-NDISA	~7 s	~100 cm ² C ⁻¹	NA	7
WO _{3-X}	0.9/1 s	154 cm ² C ⁻¹	NA	6
WO ₃	0.93/1.27s	71.8 cm ² C ⁻¹	450 cycles	5
WO ₃	5.8/1 s	51.4 cm ² C ⁻¹	81.6% after 1000 cycles	4
NiO	< 0.1 s	~45 cm ² C ⁻¹	1000 cycles	3
NiO	~5 s	88 cm ² C ⁻¹	NA	2

Supplementary Movies

Movie S1 HA-25 film measured in three electrode system powered by electrochemical workstation.

Movie S2 Digital display device powered by commercial batteries.

Supplementary References

- 1 G.-F. Cai, J.-P. Tu, J. Zhang, Y.-J. Mai, Y. Lu, C.-D. Gu and X.-L. Wang, Nanoscale, 2012, 4, 5724-5730.
- 2 D. S. Dalavi, R. S. Devan, R. S. Patil, Y. R. Ma, M. G. Kang, J. H. Kim and P. S. Patil, *J. Mater. Chem. A.*, 2013, **1**, 1035-1039.
- 3 M. R. J. Scherer and U. Steiner, *Nano Lett.*, 2013, **13**, 3005-3010.
- 4 B.-R. Koo and H.-J. Ahn, *Nanoscale*, 2017, **9**, 17788-17793.
- 5 Z. Q. Xie, Q. Q. Zhang, Q. Q. Liu, J. Zhai and X. G. Diao, *Thin Solid Films*, 2018, **653**, 188-193.
- 6 S. Cong, Y. Y. Tian, Q. W. Li, Z. G. Zhao, F. X. Geng, Adv. Mater., 2014, 26, 4260-4267.
- 7 K. AlKaabi, C. R. Wade and M. Dincă, Chem., 2016, 1, 264-272.