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Data Gathering 

The database includes 249 Donor-Acceptor couples. Donors are small organic molecules 

(see Fig. S3 for some examples and the list of donors at the end of this document), while 

Acceptors are fullerenes, namely C60, PC61BM, and PC71BM. Optimised structures, literature 

sources, experimental and computed properties are available as Supporting Information. 

Searches of the literature were conducted using Scopus. "Organic Solar Cells" was used as 

the keyword, refining the search to only include review articles between the years 2013 and 

2017, obtaining 656 reviews. Any review articles with “polymer” in the title were ignored. 

For each result, the review was searched for reporting of experimental values of PCE, Jsc, Voc 

and FF. For each paper that reported experimental values, the impact factor of the review 

was found, and it was only considered if it had an impact factor greater than 2.5. While this 

selection criterion can be debatable, it ensures an unbiased and reproducible data gathering 

process. Moreover, the value chosen for the impact factor threshold allows to include 

contributions from very technical journals (e.g. The Journal of Physical Chemistry, Physical 

Chemistry Chemical Physics), thus we deem it acceptable. Finally it also allows to overcome 

a possible sampling problem that might arise from the inclusion of too many data points at 

low photovoltaic efficiencies. Overall, 180 reviews were sourced leaving 476 reviews. For 

each device reported in the review, the original paper was searched, and all donors 

reported in that paper were recorded. If a range of values were reported, the average would 

be taken as well as a note of any experimental conditions or ratios reported. If any 

duplicates were found, they were removed from the database. Moreover, donors were only 

recorded if their corresponding acceptor was a fullerene and the composition of the active 

layer of the solar cells was a bulk heterojunction or bilayer heterojunction. As side chains in 

semiconductor devices are known to have little effect on electronic properties, each 

molecule containing long alkyl chains had their side chains were cut using the same 

methodology reported previously. 

Data set download link: https://bitbucket.org/dpadula85/organic-semiconducting-

donors/src 

Computational Details 

Optimised geometries and electronic properties were computed in vacuo at DFT/B3LYP/6-

31G* level of theory using the Gaussian 16 software.1 Reorganisation energies were 

obtained computing energy differences among single point calculations of the species 

involved in the electron transfer process (also known as “4-point strategy”).2 Geometry 

optimisations were repeated including the PCM solvation model through its Integral 

Equation Formalism for toluene and chloroform. The effect of the solvent on frontier orbital 

energies and geometries is negligible and summarised in Fig. S11. Molecular fingerprints 

were obtained by converting optimised geometries to a 2-D representation through the 

OpenBabel software,3 followed by generation of molecular fingerprints as implemented in 

the RDKit package.4 

The Scharber open circuit voltage 𝑉𝑂𝐶
𝑆𝑐ℎ was calculated by using the extracted values of 

HOMO and LUMO for the donor and acceptor respectively. To calculate the Scharber short 

circuit current 𝐽𝑆𝐶
𝑆𝑐ℎ, the energy difference between the HOMO and LUMO of the donor 

https://bitbucket.org/dpadula85/organic-semiconducting-donors/src
https://bitbucket.org/dpadula85/organic-semiconducting-donors/src
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molecule was calculated. From this, the AM1.5G reference spectrum was integrated with 

respect to wavelength between zero and the wavelength of a photon at the energy of the 

donor’s gap. The Scharber PCE 𝜂𝑆𝑐ℎ was then calculated according to Eq. 2 in the main text, 

using Pin=1000 W m-2. 

Predictions of PCE have been computed by adopting Scharber’s model and various Machine 

Learning algorithms by using as input (i) DFT electronic features (namely 𝐸𝐷
𝐻𝑂𝑀𝑂, 𝐸𝐷

𝐿𝑈𝑀𝑂, 

𝐸𝐴
𝐿𝑈𝑀𝑂, and the reorganisation energy λ) (ii) molecular fingerprints. 

For machine learning models, the best hyperparameters were identified minimising the 

average cross-validation RMSE, adopting a Differential Evolution optimisation algorithm5 in 

combination with a LOO cross-validation procedure. This means that, for each set of 

hyperparameters, each of the points of the data set is predicted by training a model on the 

remaining N-1 points, thus the average RMSE results from training N different models (N 

size of the data set). For the stochastic optimisation, we used a population size of 100, with 

a recombination rate of 0.7 and a mutation constant randomly picked between 0.5 and 1. 

The bounds for hyperparameters have been chosen as 0 < γ1, γ2 < 10 and 0 < α < 2. The 

optimal combinations of hyperparameters are reported in the Supporting Information. KRR 

predictions are the LOO predictions computed with the optimal hyperparameters. 

Kernel Ridge Regression 

KRR is a modified version of regularised least squares (also known as Ridge regression) that 

allows introducing non-linearity thanks to the so-called kernel trick.6-7 KRR is equivalent to 

Gaussian Processes Regression (GPR) if one assumes the error on the predictions to be 

negligible. Given a training set of N examples {(𝐱𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , we denote as 𝐱𝑖 the column 

vector containing d inputs for the i-th example, and as 𝑦𝑖 the output (i.e. the value of the 

target experimental property). We gather all the vectors 𝐱𝑖 in a matrix 𝑋 with N rows and d 

columns (i.e. each row of 𝑋 contains an example), and outputs 𝑦𝑖 in a column vector 𝐲. The 

least squares solution to the linear fit 𝑋𝐰 = 𝐲 can be written as 

 

𝐰 = (𝑋𝑇𝑋)−1𝑋𝑇𝐲 (1) 

To avoid overfitting, it is convenient to add a regularisation term to the least squares 

objective function to be minimised, to penalise high-valued solutions. The solution to the 

regularised problem reads 

 

𝐰 = (𝑋𝑇𝑋 + 𝛼𝐼)−1𝑋𝑇𝐲 = 𝑋𝑇(𝑋𝑋𝑇 + 𝛼𝐼)−1𝐲 (2) 

where 𝛼 is the regularisation hyperparameter, to be chosen empirically or by cross-

validation. To obtain the predictions 𝐲′ for a new point 𝐱′, we should compute 

 

𝐲′ = 𝐰𝑇𝐱′𝑇
= 𝐲𝑇(𝑋𝑋𝑇 + 𝛼𝐼)−1𝑋𝐱′𝑇

= 𝐲𝑇(𝐾 + 𝛼𝐼)−1𝜅′ (3) 

where we defined the matrix 𝐾 = 𝑋𝑋𝑇, with elements 𝐾𝑖𝑗 = 𝐱𝑖
𝑇𝐱𝑗, and the matrix 𝜅′ =

𝑋𝐱′𝑇, with elements 𝜅′𝑖 = 𝐱𝑖
𝑇𝐱′. To introduce non-linearity, i.e. replace each element 𝐱𝑖 

with a vector function 𝛟𝑖 = 𝑓(𝐱𝑖) and do the fitting with the 𝛟 vectors, it is possible to 

adopt the kernel trick by replacing 𝐾 and 𝜅′ with the following 
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𝐾𝑖𝑗 = 𝑓(𝐱𝑖, 𝐱𝑗) 
(4) 

𝜅′𝑖 = 𝑓(𝐱𝑖, 𝐱′) 

where 𝑓 is a function that maps two vectors to a scalar. The particular form of 𝑓 also 

determines the non-linearity introduced in the procedure. A kernel matrix can be 

interpreted as matrix of distances between couples of examples in an input space. 

 

Prediction of Photovoltaic Properties for Scharber’s Model 
Given the two distance measures expressed in Eqs. 2-3 in the main text, we can define the 

kernel function 𝑓 as including a linear combination of the two distances, weighted by two 

hyperparameters 𝛾1 and 𝛾2 to be chosen through cross-validation. Thus, we can rewrite Eq. 

4 as 

𝐾𝑖𝑗 = 𝑓(𝐱𝑖, 𝐱𝑗) = 𝑒−(𝛾1𝐷𝑒𝑙
2 (𝐱𝑖,𝐱𝑗)+𝛾2𝐷𝑓𝑝

2 (𝐱𝑖,𝐱𝑗)) 
(5) 

𝜅′𝑖 = 𝑓(𝐱𝑖, 𝐱′) = 𝑒−(𝛾1𝐷𝑒𝑙
2 (𝐱𝑖,𝐱′)+𝛾2𝐷𝑓𝑝

2 (𝐱𝑖,𝐱′)) 

This allows to use either electronic or structural information only, by setting 𝛾2 = 0 or 𝛾1 =

0 respectively, or to include both electronic and structural information in the model. Notice 

that if structural information are neglected by setting 𝛾2 = 0, Eq. 5 corresponds to adopting 

a Radial Basis Function kernel. 

To compare with previous works where Scharber’s model input were refined through kernel 

methods, we employed Eq. 5 setting 𝛾1 = 0 and thus only relying on structural information. 

We obtained computed photovoltaic parameters (𝑉𝑂𝐶
𝑐𝑎𝑙, 𝐽𝑆𝐶

𝑐𝑎𝑙) to be used as input for 

Scharber’s model. More in detail, for each point in the data set we define a training set as 

the remaining N-1 examples, for which we can define 𝐲 as the experimental values of the 

target property for the training set. We then obtained the kernel matrices 𝐾 and 𝜅(𝑥) 

according to Eq. 5, and the prediction on the desired point according to Eq. 3. This 

procedure, known as Leave-One-Out (LOO), resulted in the training of N different models. 

The hyperparameters 𝛼 and 𝛾2 (we set 𝛾1 = 0) were obtained by a stochastic minimisation 

of the average RMSE given by the N different models (see Computational Details). The 

efficiencies are finally obtained applying Scharber’s model to the computed photovoltaic 

parameters 𝑉𝑂𝐶
𝑐𝑎𝑙, 𝐽𝑆𝐶

𝑐𝑎𝑙. 

The results of this procedure are reported in Fig. S1. In comparison to Fig. 1 in the main text, 

we notice that this strategy results in a better agreement between computed properties and 

experimental ones, especially when using Morgan fingerprints. In comparison to the 

analogous k-NN predictions reported in Fig. 3, the results obtained through this procedure 

are similar: despite the fact that here we obtain better values to use as input for Scharber’s 

model, especially for 𝑉𝑂𝐶
𝑐𝑎𝑙, the difference is not big enough to result in a significant 

improvement of predicted efficiencies. 
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In comparison to previous works where similar kernel methods have been used adopting 

electronic parameters as input, we obtain comparable results, in terms of correlation 

metrics and RMSE (see Table S1). It is important to notice that the computational effort 

required for the calibration procedure previously reported is much higher, as one needs 

input DFT data. The predictions in Figs. 3 and S1 do not need any computational input, other 

than molecular fingerprints. 

 
Fig. S1: KRR predictions of photovoltaic properties (𝑉𝑂𝐶

𝑐𝑎𝑙, 𝐽𝑆𝐶
𝑐𝑎𝑙) from geometric similarity. 

Efficiencies have been computed by using the computed photovoltaic properties as input for 

Scharber’s model. Left: Tanimoto similarity index from Daylight fingerprints. Right: Tanimoto 

similarity index from Morgan fingerprints. 
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Figures 

 
Fig. S2: Distribution of experimental efficiencies in the data set. 

 

 

 

 
 

Fig. S3: examples of pairs of similar Donors in the database with their Tanimoto similarity 

index 𝑇(𝐱𝑖
𝑓𝑝

, 𝐱𝑗
𝑓𝑝

) computed using Daylight (T) and Morgan (M) fingerprints. The reported 

examples highlight how the similarity index based on Morgan fingerprints is able to capture 

better structural similarity. 
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Fig. S4: k-NN regression predictions of photovoltaic parameters (k = 1). Left: Tanimoto 

similarity index from Daylight fingerprints. Right: Tanimoto similarity index from Morgan 

fingerprints. 
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Fig. S5: k-NN regression predictions of photovoltaic parameters (k = 5). Left: Tanimoto 

similarity index from Daylight fingerprints. Right: Tanimoto similarity index from Morgan 

fingerprints. 
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Fig. S6: k-NN regression predictions of photovoltaic parameters (k = 7). Left: Tanimoto 

similarity index from Daylight fingerprints. Right: Tanimoto similarity index from Morgan 

fingerprints. 
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Fig. S7: k-NN regression predictions of photovoltaic parameters (k = 15). Left: Tanimoto 

similarity index from Daylight fingerprints. Right: Tanimoto similarity index from Morgan 

fingerprints. 
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Fig. S8: average LOO RMSE as a function of hyperparameters for KRR models for 

photovoltaic efficiency prediction. Optimal hyperparameters have been identified through 

stochastic optimisation (Differential Evolution). Each point represents the average of 249 

KRR models trained with a particular combination of hyperparameters. 

 

 
Fig. S9: effect of number of splits in k-fold cross validation on the performance of the KRR 

model based on Elec/Morgan Distance Kernel. 
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Fig. S10: Distribution of residual errors for the KRR model based on Elec/Morgan Distance 

Kernel trained on all dataset entries (blue), and excluding entries containing halogen atoms 

(orange). The two groups have been likely drawn from the same distribution (Kruskal-Wallis-

p = 0.96). 

 

 

 
Fig. S11: effect of PCM solvation model in geometry optimisations on frontier orbitals 

energies for the donors in the data set (top: toluene, bottom: choloroform).  
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Tables 

Table S1: Values of best hyperparameters and RMSE for the models used. Units for RMSE 

are consistent with the units of the targeted experimental property (V for 𝑉𝑂𝐶, mA ∙ cm-2 for 

𝐽𝑆𝐶 , % for 𝜂). The best model for predictions of 𝜂 is highlighted in bold. 

Fig. Model Input 
Target 

Property 
α γ1 γ2 RMSE 

3 k-NN Elec 𝑉𝑂𝐶 / / / 0.1272 

3 k-NN Elec 𝐽𝑆𝐶  / / / 3.5988 

3 k-NN Elec 𝜂 / / / 1.7808 

3 k-NN Daylight 𝑉𝑂𝐶 / / / 0.1239 

3 k-NN Daylight 𝐽𝑆𝐶  / / / 3.5855 

3 k-NN Daylight 𝜂 / / / 1.5834 

3 k-NN Morgan 𝑉𝑂𝐶 / / / 0.1207 

3 k-NN Morgan 𝐽𝑆𝐶  / / / 3.3571 

3 k-NN Morgan 𝜂 / / / 1.6263 

3 k-NN Elec/Daylight 𝑉𝑂𝐶 / 0.6104 6.7108 0.1137 

3 k-NN Elec/Daylight 𝐽𝑆𝐶  / 0.7129 8.1892 3.0464 

3 k-NN Elec/Daylight 𝜂 / 0.3637 4.4804 1.4585 

3 k-NN Elec/Morgan 𝑉𝑂𝐶 / 2.5127 7.6018 0.1037 

3 k-NN Elec/Morgan 𝐽𝑆𝐶  / 1.8503 7.1529 3.1246 

3 k-NN Elec/Morgan 𝜂 / 2.7856 9.8470 1.4848 

S1 KRR Daylight 𝑉𝑂𝐶 0.0446 0.0000 0.5622 0.1092 

S1 KRR Daylight 𝐽𝑆𝐶  0.2666 0.0000 5.0595 3.4006 

S1 Scharber 
Daylight 

𝑉𝑂𝐶
𝑐𝑎𝑙, 𝐽𝑆𝐶

𝑐𝑎𝑙  
𝜂 / / / 1.8359 

S1 KRR Morgan 𝑉𝑂𝐶 0.4216 0.0000 3.1366 0.1062 

S1 KRR Morgan 𝐽𝑆𝐶  0.6287 0.0000 6.3331 3.2238 

S1 Scharber 
Morgan 

𝑉𝑂𝐶
𝑐𝑎𝑙, 𝐽𝑆𝐶

𝑐𝑎𝑙  
𝜂 / / / 1.7120 

4 KRR Daylight 𝜂 0.5331 0.0000 7.5510 1.6383 

4 KRR Morgan 𝜂 0.4169 0.0000 7.5865 1.4872 

4 KRR Elec 𝜂 0.1954 0.2497 0.0000 1.5575 

4 KRR Elec/Daylight 𝜂 0.3071 0.3500 2.9579 1.4515 

4 KRR Elec/Morgan 𝜼 0.2144 0.1381 7.7656 1.3353 

 

The best model shows an RMSE≈1.33% (see Table S1). We compare this result with the 

RMSE one would obtain with predictions always equal to the experimental average, which is 

RMSE≈1.78%, a surprisingly low value due to the fact that the distribution of experimental 

efficiencies is strongly skewed towards low values (see Fig. S2). 
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Table S2: Values of correlation coefficients and RMSE for the models used. The best model 

for predictions of 𝜂 is highlighted in bold. 

Fig. Model Input 
Target 

Property 
r ρ τ 

3 k-NN Elec 𝑉𝑂𝐶 0.43 0.43 0.31 

3 k-NN Elec 𝐽𝑆𝐶  0.37 0.37 0.25 

3 k-NN Elec 𝜂 0.38 0.35 0.24 

3 k-NN Daylight 𝑉𝑂𝐶 0.48 0.47 0.33 

3 k-NN Daylight 𝐽𝑆𝐶  0.36 0.33 0.23 

3 k-NN Daylight 𝜂 0.51 0.43 0.30 

3 k-NN Morgan 𝑉𝑂𝐶 0.50 0.47 0.33 

3 k-NN Morgan 𝐽𝑆𝐶  0.45 0.47 0.33 

3 k-NN Morgan 𝜂 0.49 0.51 0.35 

3 k-NN Elec/Daylight 𝑉𝑂𝐶 0.57 0.56 0.40 

3 k-NN Elec/Daylight 𝐽𝑆𝐶  0.57 0.59 0.42 

3 k-NN Elec/Daylight 𝜂 0.61 0.60 0.42 

3 k-NN Elec/Morgan 𝑉𝑂𝐶 0.65 0.61 0.44 

3 k-NN Elec/Morgan 𝐽𝑆𝐶  0.55 0.58 0.41 

3 k-NN Elec/Morgan 𝜂 0.61 0.62 0.45 

4 KRR Elec 𝜂 0.49 0.49 0.35 

4 KRR Daylight 𝜂 0.43 0.39 0.28 

4 KRR Morgan 𝜂 0.57 0.58 0.42 

4 KRR Elec/Daylight 𝜂 0.59 0.57 0.40 

4 KRR Elec/Morgan 𝜼 0.68 0.70 0.51 
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Table S3: Evaluation of features importance by Feature Elimination in KRR models based on 

Electronic Distance Kernel. 

Removed 

Feature 
Model Input 

Target 

Property 
r RMSE 

/ KRR Elec 𝜂 0.49 1.5575 

λ KRR Elec 𝜂 0.49 1.5610 

𝐸𝐴
𝐿𝑈𝑀𝑂  KRR Elec 𝜂 0.45 1.5951 

𝐸𝐷
𝐻𝑂𝑀𝑂  KRR Elec 𝜂 0.44 1.6096 

𝐸𝐷
𝐿𝑈𝑀𝑂  KRR Elec 𝜂 0.25 1.7470 
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