Supporting Information

Large-area Freestanding Gold Nanomembranes with Nanoholes

Peipei Jia^{1,2,3}, Kamil Zuber⁴, Qiuquan Guo^{3,5}, Brant C. Gibson^{1,6}, Jun Yang⁵ and Heike Ebendorff-Heidepriem^{1,2,*}

¹ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)

²Institute for Photonics and Advanced Sensing (IPAS), School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia

³Shenzhen Topmembrane Technology Co., Ltd., Shenzhen, Guangdong 518000 China

⁴Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095 Australia

⁵Department of Mechanical & Materials Engineering, Western University, London, Ontario N6A 3K7 Canada

⁶School of Science, RMIT University, Melbourne, VIC 3001 Australia

* heike.ebendorff@adelaide.edu.au

In-plane modulus measurement

The in-plane modulus measurements were performed as per method described by Vucaj et. al.¹ with Bruker Nanoscope V Multimode 8 Atomic Force Microscope (AFM), using Tap 300 Al-G tips from Innovative Solutions Bulgaria Ltd. Before the measurement the cantilever was calibrated for sensitivity on a quartz substrate, with the measured value being of 42.8 nm/V. The spring constant of the tip was calculated using thermal resonance spectra of the cantilever as per Sauder method² with the value being 15.6 N/m at the resonant frequency of 293 kHz. Prior to the test the measured area was inspected by optical microscope to avoid measurements on buckled film. Each sample was tested at 5 different spots in the centre of the mesh.

Following the test, the slope of the force curves (F/S) was measured by performing linear fit on the collected curves in the contact zone. The average value of these slopes was then used to calculate the flexural rigidity *D* of the film: $D=0.0056*L^{2*}|F/S|$, where, where *L* is the length of the edge of the TEM grid. This value was finally used to calculate the in-plane modulus $E_{in-plane} = D*12*(1-v^2)/t^3$, where *v* is the Poisson ratio of the gold film $v = 0.44^4$ and t is thickness of the film⁵.

Figure S1 Release process of a freestanding gold nanomembrane (NM, 50-nm-thin). The FeCl₃ solution gradually etched the sacrificial copper layer and released the NM from the Si template. Finally, the NM floated on the surface of the solution. Typically, the saturated 30% FeCl₃ solution or commercial FeCl₃-based copper etchant (Sigma-Aldrich) were used to get high etching efficiency. The Si template was settled in an oblique angle less than 30°. With these conditions, the etching process for wafer scale NMs is usually completed in 2 hours. The released NMs can be transferred to the surface of diluted HCl solution (2%) and then deionized water to remove the FeCl₃ residue on them.

Figure S2 Release and free the 100-nm-thin gold NMs from the solution: (i) place the template with the gold NM (attached on a plastic support ring with a string) at the bottom of a container with FeCl₃ etching solution; (ii) after completely etching the copper sacrificial layer, pull the support with the gold NM up with caution; (iii) continue to pull the support to the stand-up position and release the string; (iv) slowly siphon the solution out of container to maintain equal pressures on both sides of the NM and thus avoid any damage.

Figure S3 Top: examples of focus-ion-beam (FIB) milled micro-beams and springs; Middle: serious structure damage and unbalance induced by high dose ion cutting; Bottom: top-view of several 3D-transformed structures.

Figure S4 Cutting sequences for the micro-butterfly and spring in Figure 3 to keep these irregular objects in balance after shaping. Generally, continuous cutting along one direction should be avoided as much as possible.

References

- 1. Vucaj N, Quinn MD, Baechler C, Notley SM, Cottis P, Hojati-Talemi P, Fabretto MV, Wallace GG, Murphy PJ, Evans DR. Vapor phase synthesis of conducting polymer nanocomposites incorporating 2D nanoparticles. *Chemistry of Materials* 2014, 26:4207-4213.
- 2. Sader JE, Chon JWM, Mulvaney P. Calibration of rectangular atomic force microscope cantilevers. *Review of Scientific Instruments* 1999, 70:3967.
- 3. Jiang C, Markutsya S, Pikus Y, Tsukruk VV. Freely suspended nanocomposite membranes as highly sensitive sensors. *Nature materials* 2004, 3:721-728.
- 4. Arrazat B, Mandrillon V, Inal K, Vincent M, Poulain C. Microstructure evolution of gold thin films under spherical indentation for micro switch contact applications. *Journal of materials science* 2011, 46:6111-6117.
- 5. Harik IE, Salamoun GL. Analytical strip solution to rectangular plates. *Journal of Engineering Mechanics* 1986, 112:105-118.