Supplementary Information

A flexible conformable artificial organ-damage memory system towards hazardous gas leakage based on one single organic transistor

Zhiqi Song, Yanhong Tong, Xiaoli Zhao, Hang Ren, Qingxin Tang*, and Yichun Liu*

Table S1. Comparison with the reported response of the organic transistor-based NO₂

Material	Response	Concentration	Pulse width	Ref.
Binuclear Phthalocyanine Dimer	21%	3 ppm	1 min	[1] ¹
Pentacene	3000%	10 ppm	_	[2] ^{2, 3}
TIPS-pentacene	800%	10 ppm	10 min	[3] ⁴⁻¹⁰
Ph5T2/CuPc	460%	10 ppm	> 10 min	[4]
PQTS12	229%	10 ppm	5 min	[5]
ZnPc	220%	10 ppm	> 10 min	[6]
NDI(20D)(4tBuPh)-DTYM2	50%	10 ppm	< 1 min	[7]
p -6P/PTCDI-Ph/VoPc	500%	20 ppm	> 10 min	[8]
rGO/P3HT	100%	20 ppm	60 min	[9]
РЗНТ	270%	25 ppm	5 min	[10]
CuPc film	160000%	30 ppm	2 min	[11] ¹¹⁻¹⁸
CuPc/Pentacene	400%	30 ppm	10 min	[12]
CuPc film	250%	30 ppm	5 min	[13]
CuPc/PTCDI-C8	120%	30 ppm	3 min	[14]
ZnPc	94%	30 ppm	10 min	[15]
Pentacene/DNA	50%	30 ppm	17 min	[16]
TES-ADT film	28%	30 ppm	20 s	[17]
Pentacene	22.7%	30 ppm	3 min	[18]
	91.4%	20 ppm	1 min	
PCDTPT	230%	20 ppm	2 min	Our work
	6877%	20 ppm	10 min	

Fig. S1 Multi-measured transfer curves of the typical PCDTPT OFET in dry air.

Fig. S2 Transfer curves of the typical PCDTPT OFET when tested under different conditions. (RT: room temperature)

Fig. S3 Transfer curves of the typical PCDTPT OFET to 5 ppm NO₂ with different exposure time. ($V_{DS} = -40 \text{ V}$)

Fig. S4 (a) Schematic image of the artificial organ-damage memory system based on two-terminal PCDTPT device. (b) Real-time I_{DS} of two-terminal PCDTPT device to two successive 20 ppm NO₂ pulses at pulse interval $\Delta t = 450$ and 200 s, respectively. $\Delta \tau = 60$ s. (c) PPF index of two-terminal PCDTPT device as a function of pulse interval.

Fig. S5 Real-time response of PCDTPT OFET to (a) NO, (b) SO_2 , (c) NH_3 and (d) CO.

Fig. S6 (a) FT-IR of PCDTPT film before and after NO_2 exposure. (b, c) Transfer curves of the typical PCDTPT OFET when tested under different conditions.

Fig. S7 Fabrication schematic of ultraflexible free-standing PCDTPT OFET with a top-contact bottom-gate device configuration.

Fig. S8 Typical transfer charactristics of the ultraflexible PCDTPT device under a) flat state, b) bending state (r $\approx 1.1 \ \mu m$). $V_{DS} = -40 \ V$.

Fig. S9 SEM image of the sharp blade.

Fig. S10 Schematic image of the experimental setup used for the gas sensing.

REFERENCE

- 1. G. Lu, K. Wang, X. Kong, H. H. Pan, J. H. Zhang, Y. L. Chen and J. Z. Jiang, *Chemelectrochem*, 2018, **5**, 605.
- 2. M. Mirza, J. Wang, L. Wang, J. He and C. Jiang, Org. Electron., 2015, 24, 96.
- 3. S. Hou, X. Zhuang, Z. Yang and J. Yu, *Nanomaterials*, 2018, 8, 203.
- Z. Song, G. Liu, Q. Tang, X. Zhao, Y. Tong and Y. Liu, *Org. Electron.*, 2017, 48, 68.
- 5. H. Li, J. Dailey, T. Kale, K. Besar, K. Koehler and H. E. Katz, *ACS Appl. Mater. Interfaces.*, 2017, 9, 20501.
- 6. Z. Song, Q. Tang, Y. Tong and Y. Liu, *IEEE Electron Device Lett.*, 2017, **38**, 1586.
- 7. Y. Zang, F. Zhang, D. Huang, C. A. Di, Q. Meng, X. Gao and D. Zhu, *Adv. Mater.*, 2014, **26**, 2862.
- 8. S. Ji, H. Wang, T. Wang and D. Yan, *Adv. Mater.*, 2013, 25, 1755.
- 9. T. Xie, G. Xie, Y. Zhou, J. Huang, M. Wu, Y. Jiang and H. Tai, *Chemical Physics Letters*, 2014, **614**, 275.
- 10. T. Xie, G. Z. Xie, H. F. Du, Y. Zhou, F. B. Xie, Y. D. Jiang and H. L. Tai, *IEEE Sensors Journal.*, 2016, **16**, 1865.
- W. Huang, X. Zhuang, F. S. Melkonyan, B. Wang, L. Zeng, G. Wang, S. Han, M. J. Bedzyk, J. Yu, T. J. Marks and A. Facchetti, *Adv. Mater.*, 2017, 29, 1701706.
- 12. S. Han, J. Cheng, H. Fan, J. Yu and L. Li, Sensors, 2016, 16, 1763.
- 13. Y. Jiang, W. Huang, X. Zhuang, Y. Tang and J. Yu, *Materials Science and Engineering: B*, 2017, **226**, 107.
- 14. H. Fan, W. Shi, X. Yu and J. Yu, Synthetic Metals, 2016, 211, 161.
- S. Ji, X. Wang, C. Liu, H. Wang, T. Wang and D. Yan, *Org. Electron.*, 2013, 14, 821.
- 16. W. Shi, X. Yu, Y. Zheng and J. Yu, Sens. Actuators B., 2016, 222, 1003.
- Y. Seo, J. H. Lee, J. E. Anthony, K. V. Nguyen, Y. H. Kim, H. W. Jang, S. Ko, Y. Cho and W. H. Lee, *Adv. Mater Interfaces.*, 2018, 5, 1701399.
- X. Zhuang, W. Huang, S. Han, Y. Jiang, H. Zheng and J. Yu, *Org. Electron.*, 2017, 49, 334.