Electronic Supplementary Material (ESI) for Molecular Omics. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Lipidomics reveals insights on the biological effects of copper oxide nanoparticles on a human colon carcinoma cell line

N. G. Chavez Soria, D. S. Aga*, G. E. Atilla-Gokcumen*

Department of Chemistry, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260 USA

*Corresponding authors Diana S. Aga (dianaaga@buffalo.edu) G. Ekin Atilla-Gokcumen (ekinatil@buffalo.edu)

Figure S1. Characterization of CuO NPs. Particle size distribution of CuO NPs by **A**) dynamic light scattering and **B**) transmission electron microscopy shows agglomeration of CuO NP in the growth medium.

Figure S3: Dose-dependent upregulation of p62 and LC3B-II in HCT-116. Western blotting quantitative results showing levels of **A**) p62 (n=3) and **B**) LC3B-II (n=3) as a normalized ratio of α -tubulin for control and CuO NP expose cells (1.25-20 µg/ml) control. (p-value: *: p≤0.05, **: p≤0.01, ***: p≤0.001, ***: p≤0.001, no sign: not significant).

Figure S4: A) Western blotting results showing levels of PARP, cleaved PARP (C-PARP), Caspase 3, p21, p16(arrow denotes expected p16 band) and α -tubulin for control and CuO NP expose cells (1.2-20 µg/ml) control. A positive control for apoptotic cells are run in the same gel to confirm the lack of cleaved PARP (C-PARP) **B**) Viability HCT-116 cell lines that are exposed to CuO NP and pan caspase inhibitor zVAD-fmk.

Figure S5. Metabolomics collection, preparation, and analysis workflow A) Sample treatment, collection, biphasic extraction, the addition of internal standards (TAG (13:0/13:0/13:0), ceramide (17:0) and d₉-oleic acid) and data acquisition for metabolomics of human colon carcinoma cell lines exposed to CuO NPs. B) Data acquisition and analysis parameters for the identification of up and down-regulated species after treatment.

Figure S6. Total copper concentration in HEK 293T cells and growth medium. A) Total copper concentration (65 Cu) in growth cell medium in µg of Cu per mL (mean ± std dev) of growth medium. B) Total copper concentration (65 Cu) in 293T HEK cells in ng of Cu per mg of protein after 24-hour treatment. C) Western blotting results showing levels of D) p62 (n=3) and E) LC3B-II (n=3) as a normalize ratio of α -tubulin for control and CuO NP expose cells (1.25-10 µg/ml) control. (p-value: *: p≤0.05, **: p≤ 0.01, ***: p≤0.001, ****: p≤0.0001, no sign: not significant).

Table S1. Species that change after CuO NP treatment. Untargeted lipidomics results showing species accumulating or depleting species in the non-polar layer. (p-value: *: $p \le 0.05$, **: $p \le 0.01$, ***: $p \le 0.001$, no sign: not significant). Species that are shown in bold remain unidentified (we were not able to assign structures based on the fragmentation information).

Retention time (min)	m/z	Adduct	Fold Change [2.5 µg/mL /Control]	Fold Change [5 µg/mL /Control]	Identification (MS/MS)	
63.83	564.5325	[M-H] ⁻	6.05***	8.52**	Ceramide (18:1,18:0)	
65.61	618.5807	[M-H] ⁻	1.84***	2.18**	Ceramide (18:1, 22:1)	
65.94	606.5792	[M-H] ⁻	2.33***	3.06**	Ceramide (16:1, 23:0)	
66.45	620.5957	[M-H] ⁻	1.94***	2.30**	Ceramide (18:1, 22:0)	
66.75	622.6063	[M-H] ⁻	1.98**	2.55**	Dihydroceramide (18:0, 22:0)	
7.87	485.3569	-	1.60	2.19**	No match	
38.97	416.3376	-	3.42	6.23**	No match	
41.52	468.3114	$[M+H]^{+}$	2.29**	2.75**	Lyso PC (14:0)	
43.39	568.3429	$[M+H]^{+}$	1.96**	2.84**	Lyso PC (22:6)	
43.41	544.3445	$[M+H]^{+}$	1.80**	2.90**	Lyso PC (20:4)	
43.86	596.3352	$[M+H]^+$	1.22	2.62***	Phosphocholine containing lipid	
43.85	572.3360	$[M+H]^+$	1.42	3.58***	Phosphocholine containing lipid	
44.44	496.3419	$[M+H]^{+}$	2.22**	2.76**	Lyso PC (16:0)	
44.59	598.3516	$[M+H]^+$	1.10	2.51***	Phosphocholine containing lipid	
45.65	482.3609	$[M+H]^{+}$	2.80***	3.82**	Lyso PC (O-16:0)	
46.33	508.3752	$[M+H]^{+}$	2.31**	2.89**	Lyso PC (O-18:1)	
47.14	524.3714	$[M+H]^+$	2.18***	2.77**	Phosphocholine containing lipid	
60.61	627.5369	$[M+H-H_2O]^+$	1.77**	2.08*	DAG 38:4 (18:0,20:4)	
65.80	868.7379	$[M + NH_4]^+$	1.82**	2.82**	TAG 52:6 (14:0, 22:6, 16:0)	
66.06	894.7598	$[M + NH_4]^+$	1.85**	2.53**	TAG 54:7 (16:1, 22:6, 16:0)	
66.31	896.7717	$[M + NH_4]^+$	1.73*	2.14***	TAG 54:6 (18:2, 20:4, 16:0)	
66.56	922.7879	$[M + NH_4]^+$	1.96**	2.62**	TAG 56:7 (18:1, 22:5, 16:1)	
66.76	924.8021	$[M + NH_4]^+$	1.99**	2.89**	TAG 56:6 (18:1, 22:5,16:0)	
67.37	978.8565	$[M + NH_4]^+$	1.95***	2.99**	TAG 60:7 (18:1, 18:1,24:5)	

Table S2. This is provided as a separate Excel document. Abundances of lipids studied via untargeted lipidomics. Abundances, m/z's, adducts observed, specific fragments and retention times in each sample for lipids identified in the untargeted and targeted analysis are provided. **Sheet 1** is the species identified by untargeted lipidomics. **Sheet 2** is the lipid species analyzed by targeted analysis.

Nebulizer and spray chamber	Glass concentric nebulizer in Peltier cooled		
	cyclonic spray chamber (@ 2° C)		
Plasma forward Power, W	1400		
Cooling gas flow (argon), L/min	13		
Auxiliary gas flow (argon), L/min	0.70		
Nebulizer gas flow (argon), L/min	0.94		
Pole bias, V	-1.50		
Hexapole bias, V	-4.00		
Scanning modes	Survey and peak jumping		
Dwell time (ms)	30 for Cu		

Fable S3. Operational	parameters for IC	P-MS analysis	of copper
------------------------------	-------------------	---------------	-----------