Running Head: Zinc chelation by dithiol gliotoxin.

Systems Impact of Zinc Chelation by the Epipolythiodioxopiperazine Dithiol Gliotoxin in *Aspergillus fumigatus*: A New Direction in Natural Product Functionality.

Aliabbas A. Saleh¹, Gary W. Jones^{1,2}, Frances C. Tinley¹, Stephen F. Delaney¹, Sahar

Alabbadi¹, Keith Fenlon¹, Sean Doyle^{1,*} and Rebecca A. Owens^{1,*}.

¹ Department of Biology, Maynooth University, Co. Kildare, Ireland.

² Centre for Biomedical Research, School of Clinical and Applied Sciences, Leeds-

Beckett University, Leeds LS1 3HE, United Kingdom.

*Joint Corresponding Authors

Dr Rebecca A. Owens, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.

Professor Sean Doyle, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.

Tel: +353-1-7083839; Fax: +353-1-7083845; E-mail: <u>rebecca.owens@mu.ie</u> Tel: +353-1-7083858; Fax: +353-1-7083845; E-mail: <u>sean.doyle@mu.ie</u>

KEYWORDS holomycin, metalloenzyme, NRPS, antimicrobial resistance,

AMR, quantitative proteomics.

Figure S1. High mass accuracy spectra of gliotoxin (left) and DTG complexed with Zn²⁺ (Cl⁻adduct) (right). Calculated accurate mass indicated under the structure of each molecule.

Figure S2. Overlaid UV-vis profiles of PAR alone (I; red), and $Zn(PAR)_2$ (II). Oxidised gliotoxin added in increased concentration to $Zn(PAR)_2$ (1-5 molar equivalents of oxidised gliotoxin to Zn^{2+} ; III-VII, respectively). Oxidised gliotoxin causes no displacement of Zn^{2+} from the $Zn(PAR)_2$ complex.

Figure S3. Zn^{2+} inhibition of iodoacetamide (IAA)-mediated alkylation of dithiol gliotoxin (DTG) shown in Figure 2D. IAA converts DTG to alkylated GT, however increasing free Zn^{2+} (0.33 to 3 molar excess) inhibits this alkylation reaction, as determined by the increased amount of DTG detected with increasing Zn^{2+} concentration.

Figure S4. Time dependent inhibition of alkaline phosphatase by dithiol gliotoxin. Alkaline phosphatase was incubated in the absence (blue) and presence (black) of dithiol gliotoxin (DTG; 50 μ M) up to 90 min prior to assay.

Figure S5. Effect of chelating agents and reducing agents on alkaline phosphatase (AP) activity. **A.** EDTA (5 mM) partially inhibits alkaline phosphatase activity, while gliotoxin (GT) induces no enzyme inhibition. TCEP-reduced gliotoxin (DTG; 150 μ M) substantially inhibits AP activity. Similarly gliotoxin derived from *A. fumigatus* culture supernatants (Afu-GT) showed an increase in enzyme inhibition following TCEP-mediated reduction (Afu-DTG). Impact of different concentrations of dithiothreitol (DTT; **B**) or glutathione (GSH; **C**) (0.05, 0.1, 1.0 and 5.0 mM) on the activity of alkaline phosphatase. Solvent controls contain equivalent concentrations of methanol and TCEP as the DTG sample.

Figure S6. Zn²⁺ partially recovers AP enzyme activity following DTG-induced inhibition. Preincubation of AP with DTG (15 minutes) causes substantial inhibition of enzyme activity (dark green). Subsequent addition of Zn²⁺ (0.1-1 mM) partially recovers this activity (light green). This complements the result shown in Figure 3C, which demonstrates that pre-incubation of DTG with Zn²⁺ completely protects AP from DTG-associated inhibition.

Figure S7. Gliotoxin (15 and 30 μ M) acts synergistically with Zn²⁺ to significantly (p < 0.005) inhibit growth of *A. fumigatus* $\Delta gliT$. **A.** Plate assays showing the effect of Zn²⁺ alone on *A. fumigatus* $\Delta gliT$ growth at 96 h, and the combinatorial effect with gliotoxin. **B.** Graphical representation of same in terms of relative growth percentages.

Figure S8. Zn^{2+} affects gliotoxin uptake and secretion in *A. fumigatus*. **A.** Zn^{2+} increases the rate and extent of gliotoxin uptake by *A. fumigatus* wild-type at 30 min. **B.** Zn^{2+} increases the rate and extent of gliotoxin uptake by *A. fumigatus* $\Delta gliT::\Delta gtmA$. **C.** Comparative effect of Zn^{2+} on gliotoxin uptake and efflux by *A. fumigatus* wild-type and $\Delta gliT::\Delta gtmA$. **D.** Relative accumulation of gliotoxin in fungal mycelia following exposure to exogenous gliotoxin (+/- Zn^{2+}). Zn^{2+} addition results in significantly greater accumulation of gliotoxin in both *A. fumigatus* wild-type and $\Delta gliT::\Delta gtmA$. The impaired efflux observed (S8C) for *A. fumigatus* $\Delta gliT::\Delta gtmA$, compared to wild-type, is accompanied by >2x intracellular accumulation of gliotoxin. Significance was determined by 2-way ANOVA and Bonferroni post-tests * p < 0.05, ** p < 0.01, *** p < 0.001.

Figure S9: Functional analysis (FungiFun2: GO annontation) of proteins with altered abundance following combinatorial treatment (Zn^{2+}/GT) of *A. fumigatus* $\Delta gliT$ compared to gliotoxin alone. Qualitative and quantitative results are combined and analysis was performed on proteins showing differential abundance. **A.** Significantly enriched functional groups among proteins with higher abundance in Zn^{2+}/GT treatment compared to GT alone. Enriched categories (p < 0.05) with more than 1 protein/category shown in order of ascending p value. **B.** Proteins with zinc-binding activity (GO term: 0008270) with increased (above x-axis) or decreased (below x–axis) abundance in *A. fumigatus* $\Delta gliT$ in each of the comparator conditions. Qualitative and quantitative results are combined to generate proteins with increased or decreased abundance. Zinc-binding proteins (n=8) were significantly increased in abundance in the combinatorial condition (Zn^{2+}/GT) compared to gliotoxin treatment alone (p = 0.005).

Figure S10. A. Relative gliotoxin levels in organic extracts obtained from *A. fumigatus* cultures (grown \pm 0.027 mM or 0.5 mM ZnSO₄) in Czapek-Dox media (24, 48, 72 h). Detection wavelength: 254 nm. **B.** Relative fumagillin levels in organic extracts obtained from *A. fumigatus* cultures (grown \pm 0.027 mM or 0.5 mM ZnSO₄) in Czapek-Dox media (24, 48, 72 h). Detection wavelength: 336 nm. A 2-way ANOVA with Bonferroni post-tests was used to compare results. ** *p* < 0.01, *** *p* < 0.001