Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018

Supplemental Material

The impact of apical and basolateral albumin on intestinal zinc resorption in the Caco-2/HT-29-MTX co-culture model

Maria Maares¹, Ayşe Duman¹, Claudia Keil¹, Tanja Schwerdtle^{2, 3}, Hajo Haase^{1, 3,*}

Supplemental Methods

Real time PCR

QPCR-analysis for ALP and MUC5AC was performed as described in the main text, using the primer listed in Suppl. Table S1.

Table S1. Oligonucleotide sequences used for real-time PCR

Primer	NCBI Reference	Sequence fwd 5'-3'	Sequence rev 5'-3'	Ref
	Sequence			
ALP	NM_001631.4	CCGCTTTAACCAGTGCAACA	CCCATGAGATGGGTCACAGA	[S1]
MUC5AC	NM_001304359.1	CATCAACGGGACCCTGTACC	ACAGGTCGACTGGTTCTGGT	
β-actin	NG_007992.1	CGCCCAGGCACCAGGGC	GCTGGGGTGTTGAAGGT	[S2]

Histological staining of mucins

The mucin-secretion of Caco-2/HT-29-MTX co-cultures was investigated by histological staining of anionic mucins, using alcianblue, and neutral mucins with the PAS (periodic acid-Schiff)-staining. Therefore, a total of 120.000 cells was cultivated in 6-well plates for 21d, whereas several ratios of Caco-2 and HT-29-MTX were co-cultivated (Caco-2/HT-29-MTX: 100/0, 90/10, 75/25, 50/50, 0/100). The

¹ Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Germany;

² Institute of Nutritional Science, University of Potsdam, Germany;

³ TraceAge - DFG Research Unit on Interactions of essential trace elements in healthy and diseased elderly, Potsdam-Berlin-Jena, Germany

^{*}Corresponding author

protocols for the alcianblue- and PAS-staining were adapted after [S3]. Prior to the staining, cells were washed carefully with PBS and fixed using 3.7% formaldehyde in PBS. For the alcianblue-staining, cells were washed again with PBS, incubated with 3% acetic acid for 3min cells and directly treated with 1% alcianblue 8GX (in 3% acetic acid) for 30min. Subsequently, the staining reagent was carefully removed, cells were washed with H_2O and macroscopic pictures were taken. Prior to the PAS-staining, cells were incubated with 5% periodic acid for 5min, washed carefully with PBS and incubated with Schiff-reagents for 15min. The Schiff reagent was generated following the method from Graumann [S4] using 5% pararosanilin. After successful incubation, Schiff-reagent was removed from the cells and pictures were taken instantly.

Alkaline phosphatase activity

The effect of cellular ratio on the activity of alkaline phosphatase (ALP) in co-cultures of Caco-2 and HT-29-MTX was investigated, examining several Caco-2/HT-29-MTX ratios: 100/0, 90/10, 75/25, 50/50 and 0/100. Therefore, two days prior to the HT29-MTX cells, Caco-2 cells were transferred to 96-well plates (a total of 5,000 cells) and ALP-activity after 21d of cultivation was analyzed as described [S1].

Supplemental Figures

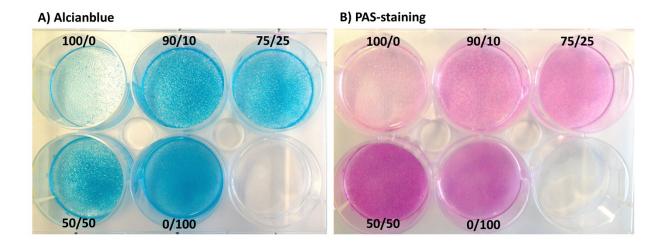
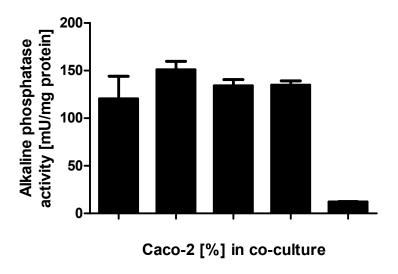
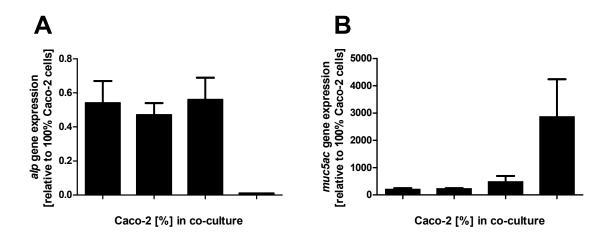




Figure SF1: Histological analysis of secreted mucins by Caco-2/HT-29-MTX co-cultures. Co-cultures of various ratios of Caco-2 and HT-29-MTX cells were cultured for 21d and mucin secretion was investigated using alcianblue- (A) and PAS-staining (B).

Figure SF2: Activity of Alkaline phosphatase (ALP) in Caco-2 and HT-29-MTX co-cultures. Shown is the ALP-activity in Caco-2/HT-29-MTX co-cultures with different cellular ratios depicted as the relative amount of Caco-2 cells. Enzyme activity was measured after 21d of cultivation using the ALP-assay and is displayed relative to cellular protein. Data are displayed as means + SD of three independent experiments.

Figure SF3: Expression of characteristic genes for Caco-2 and HT-29-MTX in the co-cultures. Gene expression of differentiation marker *alp* [S1] and *muc5ac*, which is one of the characteristic mucins secreted by HT-29-MTX [S5], was analyzed in Caco-2/HT-29-MTX co-cultures after 21d of cultivation using qPCR (A) *Alp*-expression is shown relative to Caco-2 monocultures. (B) *Muc5ac*-expression is depicted relative to Caco-2 monocultures. Data are shown as means + SD of three replicates.

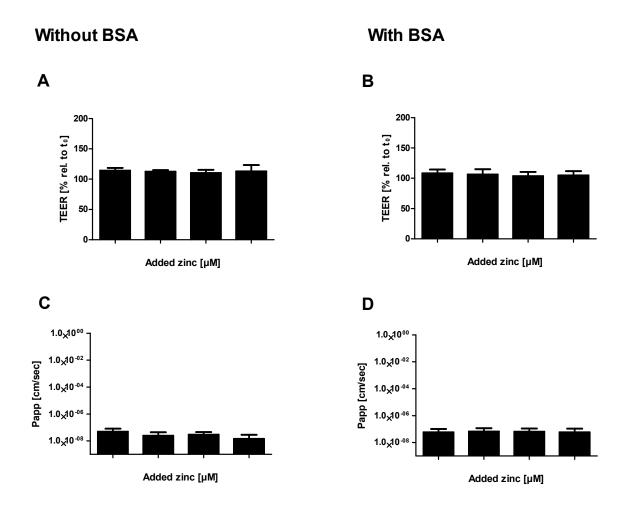


Figure SF4: Integrity of Caco-2/HT-29-MTX cell monolayers used for the transport studies depicted in Fig. 6 measured as TEER (A, C) and paracellular permeability (C, D). Shown is the TEER of cell-monolayers after the transport-experiment relative to TEER measured before incubation with zinc and Omg/mL (A) or 30mg/mL albumin, respectively. The permeability of the cell monolayer during the transport assay without (C) or with albumin (D) is depicted as the apparent permeability (P_{app}) of a 20kDa FITC-Dextran. Data are shown as means + SD of three replicates.

	WST		MTT		NRU		SRB	
					_			
	0% FCS	10% FCS						
Best-fit values								
Bottom	21,97	33,95	9,525	-42,44	0.0	0.0	3,663	1,599
Тор	97,04	87,61	109,7	104,1	111,6	105,1	108,6	103,3
Hill slope	-2,315	-4,216	2,473	2,881	-4,163	-4,165	-5,034	-5,012
95% Confidence	162.5 to	315.4 to	247.4 to	214.1 to	397.7 to	648.2 to	239.1 to	451.2 to
Interval of LC ₅₀	567.7	761.2	356.3	2694	486.8	741.6	306.4	506.9
] 	
Goodness of Fit			 		 			
Degree of Freedom	17	17	17	17	18	18	17	17
R ²	0.7939	0.6740	0.9664	0.9453	0.9601	0.9761	0.9719	0.9860
Absolute Sum of	4,033	3,543	1,094	1,294	1,294	456.2	1,219	402.1
Squares	1,000	3,3 .3	1,054	-,	1,257	155.2	1,213	102.1
Standard deviation of residuals	15.40	14.44	8.023	8.723	8.479	5.034	8.467	4.863

Table ST2: Parameters of the non-linear regression analysis applied in the zinc cytotoxicity study in Fig.

3. Shown are parameters of the applied non-linear regression using a sigmoidal dose-response curve with variable slope as a function of the logarithm of zinc concentration. Data were obtained in three independent experiments and analyzed with GraphPad Prism software version 5.01 (GraphPad Software Inc., CA, USA).

Supplemental References

- [S1] M. Maares, C. Keil, S. Thomsen, D. Günzel, B. Wiesner, H. Haase, Characterization of Caco-2 cells stably expressing the protein-based zinc probe eCalwy-5 as a model system for investigating intestinal zinc transport, Journal of Trace Elements in Medicine and Biology (2018).
- [S2] K. Wolf, C. Schulz, G.A.J. Riegger, M. Pfeifer, Tumour necrosis factor-α induced CD70 and interleukin-7R mRNA expression in BEAS-2B cells, European Respiratory Journal 20(2) (2002) 369-375.
- [S3] H. Denk, H. Künzele, H. Plenk, J. Rüschoff, W. Seller, Romeis Mikroskopische Technik. 17., neubearbeitete Auflage, Urban und Schwarzenberg, München-Wien. Baltimore (1989) 439-50.
- [S4] W. Graumann, Zur Standardisierung des Schiffschen Reagens, S HIRZEL VERLAG Stuttgart, 1953, pp. 225-226.
- [S5] G. Nollevaux, C. Deville, B. El Moualij, W. Zorzi, P. Deloyer, Y.J. Schneider, O. Peulen, G. Dandrifosse, Development of a serum-free co-culture of human intestinal epithelium cell-lines (Caco-2/HT29-5M21), BMC cell biology 7 (2006) 20.