Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018

Supplementary Figure S1. (A) Distribution of the ArsR-SmtB family protein lengths (in aa) in bacteria and archaea. This protein length distribution is based on 6478 sequences obtained from the Pfam database. Sequences range from 28 to 1210 amino acids. In the inset, the distribution of sequences range from 81 to 150 is highlighted. (B) Two sets of protein sequences (ranges from 81 to 150 aa) - the original set of 5218 sequences and the revised set of 3104 sequences (removing duplicates and near-identical sequences) are overlaid to show the similarities. Smoothed line option was used to generate the graph plots in excel.

Supplementary Figure S2. Distribution (in percentage) of different motifs in seven groups of metal-/nonmetal-binding sites ($\alpha 2$, $\alpha 3$, $\alpha 4$, $\alpha 5$, MX, NM, and UN) in (A) all 3104 sequences (archaea and bacteria), (B) 271 archaeal sequences, and (C) 2833 bacterial sequences. This is an expanded version of Figure 1 showing the distribution of motifs (class) in each group. The $\alpha 2$ group motifs are not found in archaeal sequences, hence not shown.

Supplementary Figure S3. Distribution (in percentage) of major motif sub-classes found in (A) α 3, (B) α 5 and (C) α 3N- α 5 class of bacterial sequences shown in Supplementary Figure S2. (A) The detailed distribution of different α 3, α 32 and α 3N motifs found in the bacterial α 3 group. (B) The detailed distribution of different α 5 motifs found in the bacterial α 5 group. (C) The detailed distribution of different α 3N- α 5 and α 3- α 5 motifs found in the bacterial MX group. Different sequence motif sub-classes (denoted in small letters) are shown adjacent to the pie chart of the respective motif figures.

Supplementary Figure S4. (A) Three sets of protein sequences (ranges from 81 to 150 aa) - all 3104 sequences of archaea and bacteria, 271 archaeal sequences and 2833 bacterial sequences are overlaid to show relationships. (B) 271 archaeal sequences are overlaid with different group sequences (α 3, α 4, MX, and UN) from archaea. The α 5 and NM group sequences from archaea are not shown due to a low number of occurrences (<5). The α 2 group sequences were not found in archaea, hence not shown. (C) 2833 bacterial sequences are overlaid with different group sequences (α 2, α 3, α 4, α 5, MX, NM, and UN) from bacteria. Distribution of the protein lengths in seven groups, α 2, α 3, α 4, α 5, MX, NM, and UN, and UN, are shown in maroon, red, orange, light green, dark green, sky blue and blue colors, respectively. Smoothed line option was used to generate the graph plots in excel.

Supplementary Figure S5. (A) Cartoon representation of $\alpha 2 \cdot \alpha 52$ or $\alpha 2 \cdot \alpha 53$ metal binding site is shown. Cartoon representation of (B) α 3 or α 32, (C) α 3N, (D) α 3N2, and (E) α 34 or α 35 metal binding sites are shown. (E) The dotted triangle with 'w' letter represents the wing comprising $\beta 1-\beta 2$ strands in between $\alpha 4$ and $\alpha 5$ helices. Cartoon representation of (F) $\alpha 4c$ and (G) α 4c2 metal binding sites are shown. (G) The cartoon representation of α 4c2 site shown represents two different models. One model has two metal binding sites (two orange spheres in the α 4 helix and the C-terminal, respectively), and the other model has one metal binding site in the $\alpha 4$ (orange sphere) and one in the $\alpha 2$ (white sphere) helices. Cartoon representation of (H) α 5 or α 56, (I) α 5N, (J) α 5c or α 53, (K) α 54 or α 55 and (L) α 57 metal binding sites are shown. Cartoon representation of two MX group sites (M) α 3N- α 5 and (N) α 3- α 5 are shown. Cartoon representation of (O) α 2- α 5 and (P) α 33 redox-responsive sites are shown. (O-P) Cysteine residues are marked as filled circles. Metal ions are denoted as spheres (purple for As, orange for Cd, grey for Zn, green for Ni, and violet for MAs). Two subunits (a and b) of the protein are indicated in red and blue colors, respectively. N- and Cterminal ends of each subunit are indicated and for each subunit, α -helices are numbered from 1 to 5. The dotted line represents N- or C-terminal extensions.

Supplementary Table S1. The final sequence dataset (3104 sequences) of the ArsR-SmtB family proteins. UniProt IDs of all sequences are mentioned.

B1X005	C3HA99	F4GEA8	G1WWD0	Q6KHJ8	F9VBV0	C9P424	F7XN77	D5SWJ4	A6TP79	C2FX99	C0EHA2	Q9V2K4
E7YSG6	D5TZB9	B7R169	A07151	F6U372	Α4ΥΔΑ4	F7YSG5	D1BEA9	CEWIOO	E1YE30	G807A6	A3TK05	A1U6T8
E2KI04	106186	A15112	EE14/EL19	DORAD1	D757U1	P7VMC1	E2EID2	EEDOEE		0010/84	677647	
121004	FOCENIA	A15155	C2DV/D2	DONAL 1	072701	5014070	131113	100000	DSINITIS	00377114	072147	
A4YEPU	FUSZN4	C5BEF3	G2RVP2	A9NG94	IUFX86	E8IVI070	HUQN88	Q84FJ1	D50HR4	C8XIVU	CSBINB8	ASUIZ6
B4RQF8	E812J1	B9MEE/	D5EIW7	F9VEZZ	C6D812	A4SFL9	E1UTK6	C2EHL8	COXR44	H1ZAZ3	D0P6F1	D50HW1
H2C3B8	D8GPC6	F9ZT25	Q67LU1	D8GTH9	C2FD31	Q2Y8E0	A7ZA88	G2HT57	D5NYI7	E1W0J4	Q2SEP0	A8L456
C3IA11	E3GM80	D4F868	D4ZDA7	C5USP8	H0UFG7	C7CBJ3	B8H964	A7GR47	E8LK40	E6TPX7	E7FM99	D1C9C0
D1GFC0	B9DX19	H5XU57	B9J7U8	H1Z1I1	G0GB89	G2IU87	F0JD34	D7BQ75	F4LK23	Q1HW04	H0JUP2	D6TY78
B5Y614	E3GHX4	C6RMA4	D0SWJ9	B1HNK9	Q12TH0	B6R8M4	HOJIHO	G2HA70	A4EAP8	H6WCN2	A3HX12	D7CE76
Q4JCP3	C7WQN2	H8DV82	D0S9G2	C3H313	Q8TV78	HORT56	A1SN57	Q6APQ1	G9WHF2	D7W8Y1	A9A2H0	A3QA62
F2I 5A2	C8PXF7	HORP28	F1SUM6	C4FKO5	F6B9U7	A3X8H6	G4T298	D7FAI0	H11H50	D67080	C2GKA3	F8N2I0
C008K0	DOCREO		A 21/21//5	PROCYG	02000	A 91760	E51/VI7	590017	E1\/\/77	028651	1011266	E2U7D5
050501	CACDOG		ECIMINIA	C643Y2	D20300	A3K0V0	C2DI00	C41 471		021501	CONVRA	0001117
030391	G4CFQ0	DOZBIVIZ	LUVININO	DODULLO	D7KIL3	ASK910	C3FI09	641421	AUAVVIZ	631101		
D3Q0K9	G4H1W6	F3BI14	H4F821	D3PVH9	B3PHV7	QUINEII	B8CI76	FOITI	F5XIN1	EZSFUI	IUGHYI	BIYD51
F4B928	D3PAR7	C/R1//	Q89PF6	G4HBW3	FUSUY6	C9XYJ6	E3PWS5	G25J02	F6CLY3	C5BXC7	E41588	BEYUIU
C3H9Y6	F8E9P9	Q2SB77	F4QZK1	F6GER6	G2TMV7	D1P468	E8RIN2	C9Z3W6	F3YWB1	A6YFE2	A0B867	B4UXW2
B5I3P5	C0C5G6	G9Y6F2	H8NWD3	G2FN55	C7HWH7	B9YY59	EORF12	F0TAK7	F5L7G2	D2S802	D4M7J0	A3WXZ7
H6RQ71	F1T776	E8RRE3	D4XQ33	B4U802	D8P7P2	E4L9G9	Q24NC4	H0DZR8	C0ZIU2	H0QWX5	D5P4G0	A1WW26
B1BYV3	D6LFT8	Q5JHK1	B9JZP4	B9K9X2	A1BEU0	G6Y2U9	A0Q624	E1VAH1	Q2BA29	H5UKE7	A7I5D1	B7K2V8
A6NSR0	C0EAC5	O28468	B6R5U8	Q7MS50	E4TPP7	B8K8F5	A8H912	027823	D3L0L2	C4F9M3	A4T4L1	B4WUQ9
A0NMQ1	Q82R21	A3DM14	A4WB64	A2U348	F6CYD3	Q1AVK8	G7VT54	10WQ32	G7LXN1	C9N042	Q5JGL7	Q4C7J4
F30IW7	020113	606760	02W366	A8ULB1	F7R772	C700A1	H6CPD0	HOIPX9	C602T2	G7GIT4	OSTIKO	B1WTM9
C07DK1	0308M4	D2PI 15	A4SW/77	A4ART5	BOE7D7	A1W/W/X6	021089	FEBHEQ	F3ATR5	C0E074	BOTVRO	010101
0050112				FUCTOR	D06677	102005	076602	AGDEDO	BUREIO	DEKDVO		EATROO
104377	E0E2EC			01111/0	070061			CEMIONIA	DOTOD		000101	DOE2D4
	FOE/ED			Q11012	4/0001	Q0L214	COSTING	0000904	0915P9	A4AH03	QOOLK1	D9E2B4
B3F1B3	D51BZ8	DAZAE	F8H265	G8X4F7	AbrGX2	028425	A4YFH1	D5DX94	B11JJ2	COWIP/	G/GY48	E3GHY/
Q2SPK9	D512M7	B8GKZ3	F6ALR8	A9DUJ1	C08301	E/MM62	G4RAU2	Q46BU3	C4IEN3	G85A54	A411Z4	н2к0В6
G7WP74	F9N4R2	Q970W6	E6WX96	Q7UU43	F6DAB7	10QZ50	A8LTY7	H1Z209	Q93GK0	F5XSS5	E9SX90	F4BT61
H4FC51	A7HL41	A4FG75	E6MBT5	G7HYV0	C1A684	C6AY21	A6E5A6	E3ZUI5	E8U6Y2	F6FR29	F6FRS0	H0JX22
F2L2Y5	F9S066	F4LTY8	G9PM76	B1XL54	Q055K5	Q9L219	F2RBN0	H1G8D8	A9KJ83	H1XY12	A1RD83	B8CY49
B1CAV9	A9D2A3	D6TGR4	D3FF85	G5F2M1	C7IQY4	D3Q3D0	E0DGT8	E0GNC4	E5WRZ3	E8RBJ4	E3B8R8	Q97TJ8
Q8TJ48	C4T7H1	H3SNP2	C7Q6T0	F0RVM8	H5WWE0	H2INN2	H6R8T7	B0G4X5	Q18D53	D3FQ66	H5U7X9	F4CNZ2
G9F1H2	B5FA56	A4Y4Q5	Q8CUZ5	G4R7V3	I0DQZ9	E8LZ15	E4KRE0	H0JMF9	B1GVD1	Q24NH3	A0AW31	A1TA43
F7U7D8	Q47IG4	E0UP45	H2C9A4	Q2BAV4	A6WGR2	C9NU77	E2ZAK5	D5UH63	Q0YT80	C6J6R7	F3NQC5	D6Z8J9
B5JHI1	H3ZCG6	E4SM80	A9F7R4	H1GEI7	A8MGV8	C7MES8	F5YCQ9	C5C748	C5USW2	Q2NHU4	G9WSQ5	IOUYA9
E8TPC5	H017C3	F8DS39	F6VPT4	F8WKF9	B5HBF1	B7V090	G8ALE9	O5KRV5	A6LTE6	E5SHO6	F9SH48	H8GEN2
2011 0S	007731	B2V9E0	G4HHR4	H2IR52	D645E5	E957W5	01WRN7	E3BDS1	F8UUG7	024703	014768	H5XGH8
E9E9C7	012KM0		D17DA2			ESCUIE	G21 H21	C20K/W/2	DEVROS	E7PE26	CARDITE	A511551
101007	E0701/	E071E7	EOTEV7	EGEWIAE	021964	0171126	641452	E2M/M/02	DICKUIS		C2R5M7	A30331
	0414K0		D00363			CEEVHO	A2T172	A40A71		095174		A2 111C5
	Q4JAK9		090302	A4G5L5			ASTJZZ	A4QA71		007114	100W30	Q743C4
HOINSUS	G9AHL9	E0UA49	A/GWF0	08010194		FaC3K7	H606K9	EGIDQI	GJETVS	CTIOPO	G4HQ41	Goniou
GZGIVIUI	FULLAS	D9K5W4	COZG35	ASER88	D/CBJ6	Baczus	G91J92	A4AL81	GUFWC6	D9RXX7	G/V/Y6	EDIN/8
F6EK80	F8D7P8	GOVLQ2	E6N6A1	A9CVH4	E9UNX0	FUBKL4	AUQXQU	D5NX34	F5LI16	F4LWA7	E4RMJ3	BOMDE5
A1RTY1	E4Q720	Q1Q0Q4	F4MM27	A0KG35	B1VQU8	Q8EJD5	Q6AS13	C6R4I7	C6J120	B9DXC6	D7CY63	D3FCA0
D3PAE1	C9A0I9	Q7VA87	G2KMN8	F9ZHP4	D9WN43	A0KSK3	F0Z092	D1BDR5	B2UGN4	G5FI42	F9DY57	F4QUW0
D1GF49	E4SHQ3	Q30TT5	F2AFV5	BOUD58	F8B0Q2	A6GQ52	D4W8X3	H3MAP1	Q8XZ61	D8IAA7	D6LH84	F8GGF6
E6PAL7	F2PE01	B6BLV4	E4S8N6	D4C0I0	D4YGH6	G0AQG9	D7Y0N3	E1T6C0	Q0EXQ4	D5USS1	C6C114	E3EYW6
G4HTW2	C7IQE6	Q1J2T4	A4XIW2	A4CXY9	F1YDW1	B8HLW0	C8PYJ0	E8YM94	D3RRL5	A8MGT8	D5WZI9	Q8PW08
C8Q0H0	G0V3W8	H5XDN5	H8MV64	B1IGP0	Q0W2G2	Q2JLW1	A0NXU5	D3LUI4	Q5ZQN5	Q74B92	Q5LUR4	A9HYK3
C3WG31	GOEBEO	C8W0U6	B8E2I7	G7GLZ1	D1B6U6	Q2JVC9	B8EMA4	B1MN52	F9UGZ3	D5AT91	A6T2K3	Q46CA3
B9K9E3	Абтсто	H0JX13	B2A0L2	C2Y2P2	D7X043	A8MKL9	D7HD60	D9WLF0	F4X934	G8AUS6	B5HTL5	H6QAP5
Q9X008	H3MR51	D0Z800	G9ZRG9	A1RXE5	Q03133	G7M3D5	F2J555	HORC84	C9LNU7	D8JT35	D3RY43	A71796
D27753	D271F2	E7UEI3	A8U719	H0R211	A8TBU6	G9OHX4	B1FDB4	D7C097	F4FF52	A7IFI2	0982P0	08PS74
F1VXP4	G97014	A4XAC2	D2B1R3	O08UB5	07M049	101076	B1K9FR	F2RC57	C5C2R4	A37U/8	01NW/71	D3T6F4
	H3M990	D41 N90	D5UF53	G2PIL7	A7MXW6	A6TP93	089PH4	B5H7F3	F9R771	F00V42	D6TP25	D47YK8
FJCILE	D2TME6	655102	G7\N/9VE	G0M/01		E2/1/KN42	DECDIE	H1AH72	GOE11/G	D1C6U2	E7K5D0	B/1/KA2
E4LOI2	087455	E2E004	DQ0T17		102000			HENEAA	BOASNO	A5\/CD0	07000	COVELLE
ERCCV4		CAV200		דייסוגי	6300392		DUCEAO		A04610	E2N41/14	A01700	
			D41/20					038/19	ASADVS			
CONTINU		USERAD	0411/9	U3P2Hb				F6A55/		03/820		AOTOW4
C/PMV8	H2JJ84	H6LB79	A8GEF2	C8P5C1	F2LI66	C6BW57	CUBW45	IUKRV1	E3J9H1	D95005	DSWQS0	H1YZ01
E6W536	D4H3P4	H1XA48	H3MN27	G/M3Q6	Q13E88	QUW407	D6TNB8	AUQRM9	D5RUR9	D3Q5H4	B4SD98	Q2J7Z6
Q6NJI6	G8QYJ0	D4S6F5	H5V2T3	D9T8I5	D0CW94	A6URK8	Q9Y972	G7CE24	A4WIF8	Q8YQD0	D7DQI7	Q8ZS91
A5WEJ6	F8ALA1	B5JDZ4	A0YLS6	C0D4J4	HOBXRO	G0H1V1	D3Q3D1	E6TPY0	D8P7N2	B8GAD6	F9ZQ24	G2NWD3
A8F788	C4Z7W5	D2RP18	Q6D6S6	A4J202	D4X4R3	Q5WJT1	E8N148	G8RTW1	Q5NGH4	Q8TJ36	C5A3X7	E8V1X7
B6FUU1	B0NZG1	A4CE75	A8Y5W9	F6B2Q3	F5ZBE3	E4TJ51	B0SNU2	A4T7H1	Q8PYM0	Q47PM7	D8JAM5	G8LU81
C4Z7H5	F7NNC0	F2K2P8	G5JA97	F6DS24	Q7W1X3	B3QYW5	F4QQG0	B2HM44	F7XQC6	A1RAR0	H1Z204	IOPX49
F2JLI8	D9QT29	A7IEB2	G8LGS2	E6U968	A3JWG9	A7C6F1	F2NSJ1	A5U5Z2	B0U032	B5GTM7	B7R0W1	A1UQ11
E7GBZ2	C4RNR7	Q2KWG6	Q8GGH7	F5Y3I7	C5AHI6	A4XH75	D5DK58	IORHE1	E5XD76	A0JRE2	D5EK32	D4J9I8
F5SM82	G9WQ14	F6D9Q6	H8NZP8	E4T4L9	E3HP24	F2K2K1	H2K791	E4U5J8	B5CQD3	H3ZP29	052029	A1TA25
B9JTQ9	I0H086	A1T0P9	F5RY18	B5XUH2	C2LIP8	A6VWE6	G0H432	C7GFJ5	D4M231	C9Y5E3	D5UCL9	Q76L30
032242	C4GA05	G4CGH3	H8DT86	A9KJA5	A8LJ50	B5YHY4	A4XAI1	A7B0A1	Q1JEF8	B517Y0	A4FIC5	F5SLH6
H00N79	101 447	H5TRM2	F6WG51	07\/6\/9	B6XKR4	HIXTIR	F2RDI9	H1BMW/2	FOEPS2	GOHM92	H8F\W/R1	D8G8M2
F4K\N/D2	D28KD2	F977R2	D281 F2	C6P725	DOZELIO	DRECRT		GORVAS	026985	05\W/IF4	D5X832	B4\W/1\W/1
	H7E520	ΛΟμιν/2	D2RNIV/9	E6DV47	CALIALD	AUI E/W/2	GQYDA7	627222	GOIMAR	A111112	E6T101	
E2UD04	11/F339	A910V2				AULEVV3		DC1232		ATULUS		047100
E3HB94	A9A19/	AðGCZU		CCDDWK9	0000851	D/IEG/		DOFV/5	DOJAIVID		D/BKK9	Q4/188
FUSUN9	A6D8Q9	Q1LKS9	626106	CORKM3	C/HUK3		11A5Y6	ASKCG2	F8A409	USYW25	RTINIMID1	FUSRU6
CUCIG8	A3TSD8	B6FWA5	E8SJG3	B/GHZ9	H9UKN5	A3U398	D1YWC4	C8X549	A11A24	AUPT17	D3PUX9	Q8FNG5
D5B9L0	F7P0V2	D5RJH4	E4KZJ6	D6JQ87	Q2RLC6	A9B7Y6	G9EVW6	COFSQ4	C3JSC4	C7MSS3	E6SH50	F3MJU5

B0N8P7	Q32CR1	D6JPZ7	H7F362	G6FVM7	F1YGZ0	IOBFZ1	G9PRW8	D3S1U7	IORMC8	B1ZXF1	F8A412	Q5JDW6
C3HZA1	B3ZYC1	D0SJ13	H3NJN4	F5ZL77	E6SA77	H6R2Z4	A5D4K8	H9UL80	Q9X8X8	Q5YM82	H5TR96	B7R4I8
C5RAM6	F5S7Z3	Q6D0L8	Q3ELP7	F1YGZ2	Q1GUI7	C1AUI1	H8I4F7	E8PKL8	E4WCD7	F0LM33	C7QDQ0	B7KB27
C7XX99	Q9KEA8	Q5QWI3	C2QKV3	D0S363	A1SKU4	AOROSO	EORSVO	F6B329	G5JAE0	G0J0E6	G2GBS6	C8WSS9
Q9KI48	G85699	E5BEL2	G7GA79	F5I814	H3SF27	E0QIS7	D5CDS3	F7KRE3	D9TSX9	D5BUU6	D7W9Q3	D2QV67
E7R043	D4GVR8	F2G541	D8IAW8	F8DHS5	D5NYY8	C8NFU2	P74986	E4LSQ2	D9RZR8	B2A7P3	G2PE84	C7M1C2
G7VHH0	D4GVV2	A7HTK5	D0SQ39	D3PUY5	A8M8X6	Q03ZA7	F4V7J1	G8LWB1	A9A5P6	D6XY52	Q8NM04	D0MIH1
D8J3C9	C6HXG1	A4BBY6	D4XMP3	H2J2N3	Q5YV57	A4FL82	E3PM92	E2SGW2	E1VZS9	Q1AV49	IOREX6	H6RPZ5
GOHTB9	G010F8	HOTRB5	A8U797	A60A25	OORV07	F9W1R5	H2I991	F3PW79	F7NC74	A1RD96	A8F6V6	057801
C7P0D1	C2PGY2	C6RM09	F7V4I9	F51 FL5	C5F8A7	D0WU28	05EMZ6	G5FF59	F10YL4	A0AW45	COZBD3	H2CE19
D4GTNO	C6WB18	E31670	F8W/KB2	C2TMP8	G0IV78	F3KH79	COWYDO	D7CU4	026589	D01775	H5SV04	E5XHC6
E70P\W/1	041778	E05458	H3SKG8	H17E54	101.415	A8E0R3	C1D2M6	E3BCI7	45N3M1	00E/15	F9DV04	A1TBG0
	C2V/552	103430 H215P5	E2U707		EONIG12		CEDII 2	000481				
		P1C9D2	E911212	G2DNE2	A21652	P7\A/\A/\6	E57AG7	E001179	C9W/906		024052	G7UPV6
	C204T0	C2CNE1	D2/5//2	U17A29	A31F32		FSZAG7	C471D4	C000000			
		007650	DZJSVZ				F0D7P4		DELLATO		D211.25	CONTRACT
E4INIVIP8	FUPLI3	Q976F0	G5K4V4	D7W5IVI2	H6L/54	D6V125	E3DQB9	QUAV75	BSHATS	C/IVILA4	D3LL25	
C319P8	E4RYNZ	F6BC31	C1D3X8	G8R7S6	E8YSXU	DUJ/RU	A3Y4W8	GSGIP9	HUUNII	G8QY10	Q212C4	Q46W66
E4RNQ3	D8HAK9	QU4PN2	F8WQUI	A5FFL5	D3PUZ7	A3UEV6	F3NDW1	F4A006	Q9K5Q1	COVHCI	E2CQ24	D3EQW3
10R230	Q/2RX1	E1QRP3	C4WDF6	D7W025	COZK16	G/M5G3	E9UZLO	Q3ADS4	E6TTD7	AUK1N2	A3SZH7	E3J9N7
D5VUC6	D2ZQ55	B5UJY3	Q0ZKJ9	GOL9K7	E6H7E6	D1BPW7	D9PXD4	C8VX22	P30339	D6TIN5	Q3B575	A4U004
D4W829	D0KRQ1	10L9Q3	E5CIF8	D5BF42	C9R9P0	G4L720	Q9L1V5	C7LTU1	E6TZM5	F0M231	B4S6P9	A5FBK2
C5CEM1	A6YFU4	F0F238	Н8НЗВ8	H1H9E7	C7BK48	C2X4R9	IOPX75	B5CNL3	C6LC78	A0AWY5	Q8KEP0	A4T1V9
E4SMZ5	H9UB13	G7H1D6	C3XLI0	G8R8G0	B4UGE0	G4HJR1	D3F8F5	G8AP28	Q24P50	B9MG31	D1Y7Q9	F8A426
B4WAC9	D9TH82	F8JV56	IOBDD4	C2FXM2	F7PJG8	D6Z428	I1D561	Q1YUF1	B0G8B7	Q826Y1	Q0S966	G8RJH4
D4DU70	A7IMC2	C2PXX9	D7WV37	A9A2M9	C7NMG1	F0LFS1	B1MME4	B9QW54	B3EMA2	Q9RZ83	D7A6T2	F1T3X4
A4YGR4	E6KX74	A7ISC3	D7WNF8	B7DTX7	E8RI68	A3DP26	IOPX88	Q2RR33	E1R2L4	F7KDE4	A4TAQ3	G2FXW7
B1YBJ8	Q9KI49	Q72ZZ5	F2F0R7	H0R275	A0ZJS3	D3AEA7	G3ISL1	B1ZCL9	D3G0Y7	D1B163	B2IEG7	CODBN3
H2C7C9	C7RFZ0	COQTY4	D0WJH7	E8N9W5	Q31QE9	H5STY6	G2G6J5	B0SWH1	E6SJI0	E6TV20	Q0BTU0	Q16A53
G2FKA0	Q0GL18	B4U846	C9AT27	G4I0W7	B8HV12	H0HP07	G7ENT0	G2IJ68	F3APP0	F0SX40	H1PJ79	D5VQC2
C2VKG7	Q8ETD6	I0H401	D5HHU6	C1BD14	Q6ZEU5	D7GHQ5	E6VW45	G6Y7V7	D7BFG1	C1CZ28	B6G269	F4CQD2
F6D594	C8PP27	B3E731	F7R1V7	I0WQD9	H1D098	HORMA9	D6SSP3	C7NGD0	B3EE97	I0GTZ4	B5EF53	F7VCD4
C0EQJ9	A7B162	G8SGL1	C9RNE6	A1TC14	D9STV3	A6LZ56	D4E4P3	G4HTW4	B1B813	A3DC05	Q18H26	E0SS10
F0T8J7	E6VXR5	Q07KE1	D9RP35	C1B401	F6CMH5	E7GB69	Q24PV7	E4HP42	G2TI48	A7I3I2	I0WHH0	D2RDD6
B9WUM9	H1D0I9	Q0AT86	E6LFB7	E7ND71	Q3A8I2	D7D910	H3MV44	A6UNL5	E5WQM6	Q7M982	G9EY32	B5EAZ8
H6LC74	B9L857	P73808	F8HZ81	A6LME6	Q3ZXW8	D9PYU0	G2E4S4	C2EGK3	A6CPB0	F6D6P7	F2NHW3	Q0K5U0
G7WF30	D6GVA3	G6FVM6	G8PAO6	E5CKE2	F8AA10	A9KP72	D4GEE6	A5G6P8	D4RZ68	H215M9	O1NIX1	070K54
096YL3	F6EPJ9	001256	A6C064	D6Y5G0	C6J2F4	F9S0D8	FOLTNO	01YWI4	F4XFA6	F6U7U6	O1ARZ0	F4BT69
EZGLIES	D9T9G2	FOGY99	006015	G2KV87	D5XB12	COULED	D4H288	E0\$241	F1TF91	E408N8	E911VL8	F41519
B4V723	A80YT8	D90T26	011BE1	C2ELIW0	F40012	COETCS	B86571	C3BIG5	0976X3		Δ1SIT1	A3TII6
	G0GB32	0/91109	01N631	B1H5/19	C709D5	A5D4T9	A152117	020828	H3NIE7	C612D8	F2NBL2	C7MOB6
	C7RF18	G5E453	070188	FONIG	08727/6	F6W/701	A13207	A6TPO8	C5VR61	C2VI W/4	F11 235	
	EOPTOS	E4NIA92		E2(529	POI 202	E407701	011710	C7P1C2	A10EIA	014763	0121/02	090722
DIAI27		0491169	012051	A8EE47	E0M112	C9\\/2114		D2A7D2				
D01212	E2CL76		C1DA25		A27946	004524	ERKSCO			00W/101	010704	A01Q12
01612		LOGOLIT	CIDA25		A32640	E176U9		A/HN40		680210		
Q10L25	GUVINCS	C01A52	092020	DUEINOS	ASTATS	P120H8	030290	A03V50	D4JH35	F6A5J9		EQNICICE
E3I1U2	CZCHAI	C2W9L3	Bagkaa		095043	Q2G922	Q70K92	Q2J1V9		EIQI90	H81918	F9IN515
BOFSPI	C2BGP9	CUZEV5	CBWUXU	D0KX41	G7W8Y2	B4WUP7	H5XBE2	D4IVI3R7	ESWPKI	QZIRU5	IURKP2	A9WLP3
B5JTH5	FUGXU3	D1A229	A40485	Q3SGA2	E8WRE1	A65V38	A4X519	C1IUR7	G8N5R2	Q07M15	E2CPP3	D4HE37
Q0C1Q8	H1WQF3	B8A1M8	Q2IS21	C4ZPA6	D4H6Q7	E1IIR/	A1UKI9	C4U3V6	F4MSS0	H4F562	B3QMB4	COXRP2
G9XEY0	D8MHG5	G2HSM4	E6VE74	H0PXZ6	Q24ND0	E1SNA3	B0VH14	G5FI91	D9STV5	D8JT17	A4SFA9	Q11X73
A6UVE7	E6TWH1	F8EZJ6	Q89166	C5D131	F5L7P2	F6ADP2	B1C085	E3IU02	A8MGT7	D3P408	A9KR37	B4TGV5
G0EDB2	Q1G9R8	10GN22	A1BB68	D2BSZ6	F6EQX0	F0EDP1	E6UCJ1	D1BRT1	D2BCR3	A2SJD4	B3Q5L2	10IA10
F0TBG2	F5RG63	E2SP42	HOBSJ7	Q2NBE3	Q2BHF6	Q4KEP0	E7FVQ1	D6AB86	A8MIR7	D2RJE5	B2T655	DOLPK6
F4B596	Q3IJN1	C8VZK6	Q31PQ1	C6CQF5	B0U0U1	Q118G8	E9S4C5	B4V0H5	A6TJK0	G8NUB0	E8R2Y7	F3NQD0
E8R2P4	D5CNE7	C6RNL0	C4W826	F4MU41	D1AM39	Q3KDL3	A1W5R3	D0MFW3	C6D253	H2GVU1	F5UBW8	F8A723
C5UTA4	D6Z6D7	COQWC2	IOXRK7	H5X7F6	A6TV63	G8PFB2	D9WGV3	C7N045	C6CVU6	C3MXN1	E5VM25	Q9CCG5
G7WAX7	E6RKW4	H1BBE6	D5AVK0	D4CCI0	D1AHD3	E3ZU08	E0IAW2	H5XMZ2	EORE61	E0QSK9	D8G739	C3JKW9
D2RE71	F4AQX2	A5KJX2	F4CWW9	B9NLL1	Q2LXJ9	C9A1P1	D3PUY8	H5TT32	F9UCB5	D9R0X3	D8K2Q5	F7S2V4
A8MDA1	C0EGN1	F3ZZS0	D8J9C8	A4YI58	E3BLJ5	D5WR46	A0R3A8	H0JMQ3	B3QZ35	C9R9T8	F8K109	A3SQY3
C6SBZ6	F7RW16	E0I5R8	C6WE17	H4F028	B0JM62	D5XB18	C0QB05	D7WND9	G4Q2N6	C7M055	A5USM5	Q13BW9
G4RPN4	Q604K4	E6L3E9	I0K766	G6CFH6	D2R962	F9DWT8	Q2RGE8	E6FR16	C1B0P3	A8MGX3	F1YPQ1	Q8GCH3
B9LP09	D9SIY2	F5SHN6	F8DQV2	H8MJ51	H2J9U2	E6TU99	G5FA58	F7SLL2	F9EFF3	B0MBR3	D6B9N8	C7P4A4
D0W318	A4YSX3	Q7U826	B1HZ11	C2SKI6	G6FU51	Q7MS58	F0QBV3	H0J4W6	C6XMM7	C1F4T5	D2S5L2	Q6XN12
EONKTO	F8F2S1	E4RJH6	C5S0J8	E6N4K5	D9VGM9	D5DNR8	A6FWC0	H8G8J4	D6E980	E8T339	E8W3E2	C1BD12
F2BY03	F9CYW9	D1B373	A7HWJ6	Q0S8N8	A0R3U9	G8N5R8	B2Q2D1	D9V8M0	B1CAP9	E6J4S4	F7YV25	B9KZL4
B9ML15	I0XM55	C4XMA2	C3N683	Q9A8S1	Q6AFV1	Q5KUX7	I1B0R9	D4ZYS4	F4LKE5	H6RJ31	H0JYA7	A6WGU7
H1BLZ3	A6CTS4	F3MAW8	I0ILJ4	I0XPJ1	A8M9B3	C2MJP5	Q121S1	A9BFI8	D4YLE2	G8S4R4	H6RQX1	F5XIK3
A1TB75	Q8PSA9	F4LL50	HOHEK7	E4TIP7	D7AX99	Q65IV2	A9D969	H6RUX4	Q98HM2	E8PSA1	D4YPR7	Q73Y20
Q2W0X8	H0S6Q3	E4RM18	A7GU52	D5VG11	D2MNZ9	D3S2H5	D8MJA8	E1IIA4	A1XKI7	F2KJ02	B7CCD6	G9X2Z0
H1RYZ4	Q2BDF5	Q49WV1	Q81LG5	F4FZB3	E7GDF4	H8E678	G9RWB7	H5UJJ6	D1Y295	F4CVA5	Q8DK52	D3FBF8
D9R3P2	F3KL84	D7V0Z9	D5P9A4	B2G3I4	E7MPG9	F4AOJ8	A3TK18	H5TMH0	BOABO3	H8H395	A4T2B3	D7GIV0
E6WNCO	B0C184	F7V3D0	B2GES5	D2EH66	D4K2H7	D9PUS1	D3EIT5	B8FCY2	D50711	F4C0Y9	B2HLAR	E6TIV9
D7N3F5	F2IG25	H8E7G2	H3SLV4	D58YO4	101HG3	A4BI43	D306W3	H5TT26	B8DOV4	F4CXG1	A7VC32	G7WAV4
IOKGA1	(2)/413	G2IW/I 8	G9FGW/A	H2CDI2	F8I D44	F5XPR7	01M329	D3I 026	A4G4C7	F5XPD3	F8W/4T0	A1RD94
D5VSF2	C7XXS7	D4VWF7	H1X535	D25688	003TR5	041374	C94N19	F4G373	A7HDI7	G2GA71	H6RRI3	FOBLIRS
D3575L2	A8M0G5	A6X3X0	GR\$1/7	GRPR\A/A	DAVPR2	DUIOLO	F4NOA0	F4CKS1	D1POL7	F2RRN2	G4C7A0	004051
FOTRIJO	FANOE2	C9M618	D14M25	Δ3\/FNI/	IORGHS	D288F7	G5HTG7	F212R5	D64G73	F37R92	BOMO10	02 110
EALICE		DTACOF	D7EA22	024257		A10000		1 2J3N3	ARMONA	LIJE1000	0214526	
	1014/CAF	D/HOOD	D/EAZZ	Q3A257	C3V3V4	CANNA/D7		032000		670522	QSIVIE30	EOCU12
	1000045	C211720	000007	C/LXF4	C3A311		DOI 4147		A4CHUU B8C2D2	DCANIO	DIC9F/	
IUAZV/	A9A1X/			F/X5H5	E3G2F2		B9L4W/	ATIROO	B8G3P9	DBAAL8	F4XINK8	
L014H9	E3DQC1		HOK3Q6	F2LU83	BOROI/	F/K550	C/H162	D3A100	GZPPK5	GZINJU9	F55N48	EDIPI9
E07000			1 00/2150	1 1/17/3			1 (1/21/25		I F⊰YW/K1		1 1155750	

F6BH71	F4BPK5	H6P9D3	A1HOT0	F6ISU1	D3ROM8	A4Y4R5	C5EMB4	B5W100	A00RM7	G0TOP3	D3AF57	O8FUK9
D7DOK8	D7BKR4	Δ4IMT2	D47TC0	Δ8V/3F8	G6YIT4		F8TPL8	00BV80	G8RI89	D5FCC8	0351185	06XN55
09754152	028655	E0DU22	D75217	PASTVA	EQUIDA42	DENIVING	021770		EEVTVA	07/1/1	A6CAK1	LEMTRO
000000		F3D033		D43714				0.000000			DOOLWE	R2OCV1
U9CKX0	Q486IN6	E/NUDI	A6LV95	BORZV7	F/STPZ	G/Q5F5	HUDZRI	A4AL19	E4RJN3	D/CJH9	D9QLW6	B3QGY1
E0F970	G6YNS6	Q03RL8	G/MCW8	A1XP68	QUKA89	AULNR1	E31460	D8FJF9	DOL824	C4UJN3	Q98BA0	A9HA00
F4A148	A8F6N1	H3NQK2	A7GBE5	Q3AD40	Q476R7	E1SUE1	IOPX81	C7M9T7	C7Q0A0	G2GNS1	B8E1X7	B6W8V8
C2E4H6	Q58IT8	G8RZJ8	F1YZ80	Q2RRY7	Q3KAK7	A6FBU5	B1Y5V6	H5TXN5	F4H4G1	D6Y4B8	G8SBF6	H0E4D2
D5GZP2	E4N758	HOR3E1	D9R5R1	E0U733	B5WK14	C7LUA4	Q68GK3	H0JYY9	A0M0F8	E1QSF8	A5ZR55	E0DGE6
D3PCE3	A8RAK5	A5EI05	C0GD92	C6CL55	B5IM69	Q8ENQ3	O68020	H5UGI8	A3XLG7	A4AL16	D6CVH1	D5DC83
H5T471	C6Q2J2	C6XE53	A5HZU6	B7KE36	D9Y332	E8RI65	F4DY75	H5TWS9	E4SAZ7	G2G5T0	A2SRN2	D6TL72
D8GPC3	A6Q3G0	A3W525	A6LUK1	A6NU63	B1YG07	F9XXI8	Q46F54	Q9ZBF4	A0M104	Q6XN15	F8AJG6	I0H1B6
F0TBG9	A8M0U9	G2DMG4	D3FW73	C0WAG3	027487	A5YVA2	H7EZQ1	Q5YV39	D6Y4A9	H8G9B7	C2HZR7	E8N375
G9QFW8	A8SXB3	G3IQY2	HOUHY2	A5GLS2	A6TP89	D6SSJ1	B1JFN8	B1VPT7	D9TFP8	HORAX7	E7QUM9	F8B1N6
B3ZYR7	Q5WCI7	Q8KZ33	E0UUX1	Q9HJ62	F4B706	B1KJG7	H5XXJO	G41210	B8CM10	G7H4L4	A8KXB9	G1UWN6
E3BLP8	B9DMA8	E8LSM4	F8LF05	01AS38	E8T590	D4ZEO9	F6SD02	D0GKF6	G8TTU6	B2JEY3	O8TZF4	COBAC4
G6YDT6	D3FKI9	H8GKA3	D5P3B3	02FD42	G97RY5	B4C723	H2BUO9	A57MC0	D6TS35	F27HD2	B9F472	G8NXN1
087786	BTGKPT	FANIT3	D5113P3	H81/1W/5	FOIANS	E6X106	F2XBO3	F3GIH8	H5YEE1	E71/119	G8M095	047815
BOIRV3	E5WOL4	A4XP40	CERRCO		H01/71	E78060	C1DIK2	A4X606	F6TPY2	D1V208	H8VXT6	HREAHS
E1111E2	C9541/2	C2KPV7		D05W20	002000		C70005		POK700	DETETO	H07275	PANALINO
	C1DA94	CASYDE		02414/52		420071	AELIN4A2	CAKOEG	A 3T IV4			
		566762	C714/01/0	0240032	501000	A3Q321	AJUNAJ DZC240		A31314	AUNIT37		D2FFC0
Q5LK64	HIGUG5	POLZES	G7W819	A3WIN01	F6D295	DSJE07	D2D016	6435C9			Q4J805	DZEF09
Q3/082	DONK49	DUIJA5		Q21E43	F40D99	EADCV2	DZPQ10	C0341	DT5503	110074		DEU225
			Q40KPU			F480Y3		HTCTOD		COMICIC		030235
C9KDU5	ASDKR2	A4U808	G1V619	G7WP58		A9VF49	BTININC4	H/C209		C3WSJD	1104J4	C45257
FUI8G7	A4A/K9	B1L436	F3ALF3	A4CVC7		F0FW97	Q3A848	Q/2/R7	F4CYQ8	E3DMI9	D6E6V8	F6ERT6
D3DFU1	BUTXV7	D3EFQ0	D4TFE1	A9DNR4	E659T2	E2SE47	G/G5H8	C4L2F1	F4GLG8	C9KL94	B6GE45	D1BG40
A1TA18	A3Q8U9	Q469V6	E4TXK8	A1HUC1	G7ZA59	C3N321	E6RQN0	F7YYQ7	C8PMD4	F9DTU2	H5TTU3	B0JM43
A6UVD2	F4QTE9	G5I9X1	F3MAW5	A6ET09	E4KN11	Q47MI8	B7SKG9	C0CI95	A8ZL51	C8WVN6	A9B0J4	A3DKH1
A8MGV9	A8SW86	E1RDF2	H8XU33	E6X9H2	F4CK97	E2NSB1	Q9EUU5	F1TE71	B1G2L9	H8YZF6	IORVC6	A5W4V2
D9TSX4	D9UWM4	C2Y3Z8	A6GZY9	E8MXM9	F9MTT5	A6FCH5	E1R6K9	C6JFS1	B9CL93	C7M2N3	D9Q498	Q8PUT9
A9A9M1	Q6L1W0	C3FV37	D2EFM7	F6GBY4	Q0W7Z6	D5RS82	E2S694	B9E869	E6MIE4	H8KTJ9	H8IQ72	A1T2F1
D2JC95	F4Y282	Q027E6	F9VCH5	Q26H69	G8PAX5	C7R057	D1C3J3	Q314U8	G4T1C9	F5LFX5	A2VGC7	C7MB55
C2GK70	Q9YFE8	E3DVB7	A6CKU4	FORFY8	F3Z432	Q83N40	Q7MCM3	D6XWM8	D2S4W1	E7GBH9	G0CXE6	H0G8Q1
C2EPH0	B5UYW5	A7Z1D6	H0IQL1	F4AYP2	D0D4P8	F9DY38	10IA13	A1HUB0	G7CIH0	E1QPX0	B7ASA4	B4WC40
COVYB1	E1YJ72	C4FI52	G4D4P7	H7FVV9	Q0FXC9	A1RDA6	B8G166	A9NHM8	E4NIS9	C5E7X5	Q55940	F5SIH1
H8E8T4	B5IQ09	C1DXK7	D8MHY7	G0J119	A6Q8D5	F3NQG8	D5P4G3	C0GI40	E3B9B0	E2CP83	G5IDD7	Q6AQ20
Q1NUN9	H1Z2T6	E8T4E5	G4EV27	F2IJY4	F5UIZ8	C6D099	A2VJA6	Q12UN1	A4AKQ4	D9SPH8	E5WQI9	D3R0Q4
F8GBT7	G8TJU2	D90VF4	E9RYX4	O7NPO3	G8M128	F0LHX7	10V8D8	F6DKN4	B2HH01	D6Y3P6	F0T6W0	C1BD59
010908	F4BA10	F0DC63	A5GR23	D0MF84	07CKC2	046FY1	H2C153	A4J4O4	O8FTI4	C7NYS3	COR0B4	O8VML1
E5YP75	A1RYF7	F0U2G1	G1UTW6	1014H0	F6U3W0	08TI13	F9UVN2	DOCYI6	E8E350	F4I 7N7	F8BVW5	F4I \$23
D4W3K5	BADIEG	F8W/N99	B6WXY3	F4G7B5	ODAVE3	FAHITA	E507112	1101183	H76638	G8RMV4	B3EHB3	F5Y8S7
029604	EGLDB2	A46K14	A7NAV9	0851.60	B457W1	D5F837		D5VE12	051176	A1TA38	100034	091096
E0T954	C205T7	41 K14	BOMHOR	G7H576	B3EMQA	E8A1A2	EQMNR1	B8HU58	ESVD55	A11/C7/	A150B6	A7HGH8
E014702	020317	ASOCINO	CEDECT	DCW/742		090224		AOL D/A/7	571514	101217	D01944	A1RCV0
	C22707	ASPCL/	526237	600742		U0P124	A32303	AULBW/	F7J314	IULZL7	DUL844	AIRCVU
030207		DZZAA4	FSKCI7	GOFQ70	EZ3BV7		B9IVIG21	AOTICO	QOKE70	091082	ASIVITED	B2HN90
B9LWR3	A2CDU1	BIXPW9	AGEPU9	HUA789	Q8P002	BUIA75	H51WY2	C9LYU2	B8D0P6	ASD5Q8	DZRICZ	D3CRX1
E25610	A81C/2	CEIQWE	A4SQ15	Q38YKU	F2GD97	D8A017	D7N823	AIRCCO	G8QWI2	D50E52	D5E6K8	D3RURU
C2Q2Y3	G8S5J2	C4L6C6	G9A790	H1AK29	D5EAJ6	Q922B9	H1LW/3	H5X0M4	A6BJ31	D50H98	F8A3K8	D1ACS3
D/N913	A326L4	D2J731	D0S8L9	C5ZVB5	Q4LAB6	A4ENM3	B3QFR2	E3GLB8	D/WXP9	C5BXM7	GUQU86	A/IJE0
Q8KBX8	B6G272	G7ZPG3	Q0BZG7	Q65IM9	D2B1R0	A3WJA1	F0SH46	F2L6E5	Q72KG0	Q1J3B6	F4HL10	G7Z2R0
F8ANI1	F5YCA9	Q5HRI2	G0HMP2	E1UV78	B9M9J5	D6V9F2	A3ZS15	D7BR57	B6G2A8	B1MME5	A3TRP7	G5FIG5
F8JP62	E3HCD4	Q4LAB3	H3NGV8	F8KDK5	B2A001	F9QDM2	F2NKW7	Q72ZZ8	H9ZSD1	G2G9U3	D9W8V2	A8KZ20
COQIC7	B4UHR8	A6TLY0	A1AQC0	G4I113	D3P8T9	C5D8Z8	Q9V061	B0CB29	D1YYC1	E3B863	F6D5Y2	F6D4L2
D5AVK5	D3DK69	F4FXT8	A8TKF7	F8GKN1	Q39YA9	Q82KP1	D4J0W0	B9DJ16	F8FDI6	A1AMC2	E5CIP5	B8J090
G2FN66	Q9K8L0	B9E7M3	H8IKQ2	Q0AT54	Q748P9	IOKVR8	C1A7Z3	F7UHK1	F4FXR3	B5EK86	Q4ZWB8	Q8PUT5
B7GF65	F2RBN7	P45949	C4L214	C8N7V7	B9XS30	C2PDK6	F7NIX9	B5I456	A0R802	A6W5A1	C5ASH6	B4WTL5
E4TF07	067394	B4X1H5	A1UIY4	H8FSR9	F8G8T2	D9WEW6	F0SUY1	E4RMX1	Q82RZ7	H1Z1W2	Q6SKA1	058828
F0GTH1	G3GCB1	C4IGI7	F0SHF8	Q0F968	A5GCL2	C4RLZ6	F1TBW1	F4CXD0	Q0G1I3	A1TBB9	F1YGL1	QORKE6
G4L907	E3PWS8	D3APB4	D2ZYN4	A6U9X0	B3E6Q1	Q28UY3	E7RK22	Q2JKB0	Q212C1	F4CVQ3	F0HN83	A2SRN6
H6RD88	B8HZS4	F5XI37	G4Q775	G2DVJ0	E4T5F0	D9T9R8	E6VU65	E7NVR8	Q9A4H0	D0LEW7	G8RKQ7	F5XIL8
G5IS31	G4KU60	F0SUS4	Q1QW69	Q8RK00	E6J5U9	C4WFK6	F2JJ26	G1WQA1	Q1IKY6	E6S8J7	H8IT10	G2GDQ6
B1WQ14	A8SDF9	H2J993	F9USR6	F3L399	D5NYJ1	D1FA97	A7VW86	C7UHP0	E1VT73	E2SED3	A0AW51	Q2S6B6
B6AX86	C6LD57	Q0VL20	053478	A3VJR7	H0QN72	B2J709	H2J987	C7WQN0	Q9HJ03	D5XFN0	C6WRG2	H5X6G0
Q47E55	D5V235	A6TML9	A1TGH2	D8IV76	F9VNU6	C6E9I5	F0JHX5	C6PRG9	A4QFY6	G8RJ93	E9UV56	H5TIV2
Q6LUL6	A4YC59	H2J8S0	E8WLR5	G1Y2T0	D3PXG5	D4H371	IOJLI3	G1WWD1	COE9NO	C2FAS1	D7H7R8	H3SIG6
A7N569	H0JPY6	C1DUJ4	H1Y355	C6XMS4	Q67NY2	A1T0Q5	F8AE73	C2TR45	G2LEK5	H0JXU5	B0A7H9	H1KWN2
F0T6P7	A6Q0Y9	H1PP18	A3CV60	H1G5K6	C3XL94	G9XVM7	D4LEB1	A3IS01	E7N9T8	C2MP64	D3MQK2	Q13RV9
Q8ZYK0	G2EAK5	B1YFW2	D5EKW5	H5WXR1	C7H1I4	D9QT23	B0P994	C9YZ35	H6R272	C1A1D2	F0RQI7	Q9LCV3
D3FDH2	F5XIM9	Q5WJT4	A6D305	D3PVH2	C5EYS7	C5BHL4	D9SQ59	C6W7Y9	F6B2Q1	F3NQG1	D6S9C8	H1KXC2
Q7NSR9	E2SEQ4	B8G134	E6VTE1	C7NRQ0	G1WFF1	D8G3D4	B2A185	G9EDS3	A4J200	D0LBV7	A5WDR5	F6BAI0
FOPLVO	H1HWP0	Q3AIJO	D2RJ16	F7PF83	H7EIP9	Q9I1J7	E3HA11	A7NLK2	F3AL88	Q6SK40	A0LMA9	D1YW18
A0K0V1	A6CHI2	H1PYT1	H5U2B6	H1µC7	A7HVZ7	G80079	F7K243	C7UHP7	D3SAO0	D3F3S3	D6T013	Q9L209
D3STM5	F3B273	H7SG46	B8CIH1	G8P276	C9Z006	F9N6H8	H8YY10	IOV8A8	10PX92	D90045	DOBOR	E9T6W7
D2RW/W/7	G8N348	B6G0W/3	A310111	GOFXC4	D711W/72	D5DPM7	F21545	BOCCI7	D9X1V2	011281	H15157	DATERA
GARAV/0	051265	HUINCE	B41/G79	FQLIPFA	CRP511	09K8K6	D74650	GAFAY6	F4TV/11	Darscu	G21516	H1D324
DICSO1	ERCAIE	НЕВОСС	D8G0M0	039700	FQDIM7		C7CDND			ESMINIO	B/W/TA0	E8VID3
EUI 1000	C6121/4	B5V672	OQVTE1	0.302D3	EGELINI/		A/\\/7C2	F10K47	1101/132	D3AC12	E51222	I UMLPO
	D014//72	G114/042		A31401	COMELIO		LITEV202		C70001		09201/0	1
AGUSIVIS		D4LC72		A31A91							Q62019	1
LZWG16	L CPLRPR	U4L623	BZIZA5	A31YD/	U/VU45	U470K3	ROIKRO	I FOCALO	ASFFB5	L ENETES	G/WP/8	

Supplementary Table S2. Distribution of different motifs (class and sub-class) in seven metal-/nonmetal-binding groups of the ArsR-SmtB proteins in archaea and bacteria. Archaeal and bacterial phyla are indicated against each motif. Numbers in the bracket indicate the total number of sequences.

Domain	Group	Class	Sub-class [¥]	Phylum		
	•	α3 (5)	$\begin{array}{c} a = CxCx_2C (1) \\ b = CxCx_{3-7}C (2) \\ d = Cx_{2-3}CxC (1) \\ e = CCxC (1) \end{array}$	Euryarchaeota (5)		
	α3 group (82)	α3N (54)		Euryarchaeota (54)		
		α32 (23)	a = CxCx (11) b = CxCD (3) $c = CxCx_3D (9)$	Euryarchaeota (23)		
	α 4 group (12)	α4c (12)	NA£	Crenarchaeota (9) Thaumarchaeota (2) Parvarchaeota (1)		
Archaea (271)	α 5 group (3)	α5 (1) α54 (1)	NA£	Euryarchaeota (2)		
		α55 (1)		Thaumarchaeota (1)		
		α3Ν-α5 (16)	$a = DxHx_{10}Hx_2E(\alpha 5)(13)$	Euryarchaeota (12) Crenarchaeota (1)		
	MX group (19)		$b = DxHx_{10}Hx_2H(\alpha 5)(3)$	Euryarchaeota (3)		
		$\alpha 3 - \alpha 5 (3)$	$a = DxHx_{10}Hx_2E(\alpha 5)(2)$	Eurvarchaeota (3)		
		40 40 (0)	$b = DxHx_{10}Hx_2H(\alpha 5)(1)$			
	NM group (1)	α2-α5 (1)	NA£	Euryarchaeota (1)		
	UN group (154)	None (143)	NA£	Euryarchaeota (76) Crenarchaeota (59) Thaumarchaeota (6) Korarchaeota (1) Parvarchaeota (1)		
		None_C (11)		Euryarchaeota (7) Crenarchaeota (3) Thaumarchaeota (1)		
	0	α2-α52 (41)	NAF	Proteobacteria (24) Cyanobacteria (15) Bacteroidetes (2)		
	α2 group (61)	α2-α53 (20)		Proteobacteria (17) Firmicutes (2) Cyanobacteria (1)		
			a = CxCx ₂ C (72)	Proteobacteria (28) Cyanobacteria (22) Firmicutes (16) Chloroflexi (3) Spirochaetes (1) Synergistetes (1) Thermotogae (1)		
Bacteria (2833)	α3 group (947)	a3 (226)	b = CxCx ₃₋₇ C (23)	Proteobacteria (15) Firmicutes (4) Actinobacteria (1) Cyanobacteria (1) Fusobacteria (1) Tenericutes (1)		
			c = Cx ₃ CxC (70)	I enericutes (1) Firmicutes (65) Actinobacteria (1) Aquificae (1) Cyanobacteria (1) Spirochaetes (1) Tenericutes (1)		
			d = $Cx_{2.8}CxC$ (31)	Firmicutes (20) Proteobacteria (7) Actinobacteria (3) Deinococcus-Thermus (1)		
			e = CCxC (29)	Firmicutes (21) Proteobacteria (3)		

			Chloroflexi (2)
			Actinobacteria (1)
			Nitrospirae (1) Thormodosulfobactoria (1)
		$f = C \times C C (1)$	Firmicutes (1)
			Firmicutes (55)
			Proteobacteria (46)
			Actinobacteria (22)
			Spirochaetes (5)
			Thermotogae (5)
		a = C (143)	Bacteroidetes (4)
			Aquificae (1)
			Chloroflexi (1)
			Cyanobacteria (1)
			Verrucomicrobia (1)
			Actinobacteria (97)
			Chloroflexi (4)
		b = CC (106)	Acidobacteria (1)
			Cvanobacteria (1)
			Proteobacteria (1)
			Firmicutes (7)
			Cyanobacteria (4)
	α3N (336)	$c = Cx_3C$ (16)	Actinobacteria (3)
			Proteobacteria (1)
			Actinobacteria (13)
		$d = C_X \sqcup (16)$	Chloroflexi (1)
		$u = C x_8 \Pi (10)$	Firmicutes (1)
			Proteobacteria (1)
		$e = Cx_{12}C(13)$	Bacteroidetes (13)
			Firmicutes (9)
		$f = Cx_5H$ (12)	Cvanobacteria (1)
			Deinococcus-Thermus (1)
			Proteobacteria (11)
			Actinobacteria (6)
			Bacteroidetes (4)
		o = Others (30)	Cyanobacteria (2)
			Spirochaetes (2)
			Chloroflexi (1)
			Verrucomicrobia (1)
	α3N2 (4)	NA£	Actinobacteria (3)
			Proteobacteria (58)
			Firmicutes (56)
			Thermotogae (6)
			Deferribacteres (5)
			Spirochaetes (3)
			Actinobacteria (2)
		a = CxCx (143)	Bacteroidetes (2)
		(-)	Fusobacteria (2)
			Synergistetes (2)
			Aquificae (1)
			Chloroflexi (1)
			Nitrospirae (1)
	α32 (319)		Thermodesulfobacteria (1)
			Proteobacteria (44)
			+irmicutes (32)
			Cvanobacteria (20)
		b = CxCD (120)	Deinococcus-Thermus (4)
			Fusobacteria (2)
			Gemmatimonadetes (2)
			Bacteroidetes (1)
			Firmicutes (16)
		a = C Y C Y D (26)	Chloroflexi (2)
		$c = C X C X_3 D (20)$	Proteobacteria (2)
	1		Verrucomicrobia (2)

			Aquificae (1)
			Fusobacteria (1)
			Ignavibacteriae (1)
			Protoobactoria (5)
			Actinobacteria (3)
		d = CxCH (13)	Firmicutes (3)
			Planctomycetes (1)
			Verrucomicrobia (1)
			Firmicutes (7)
			Proteobacteria (5)
		o = Others (17)	Cyanobacteria (2)
			Aquilicae (1) Deferribacteres (1)
			Fusobacteria (1)
			Deferribacteres (4)
			Chlorobi (4)
	a34 (16)		Actinobacteria (3)
			Aquificae (2)
			Bacteroidetes (2)
		─ NA [£]	Bacteroidetes (35)
			Firmicutes (4)
	···2E (46)		Planctomycetes (3)
	α35 (46)		Proteobacteria (2)
			Cyanobacteria (1)
			Chloroflexi (1)
			Actinobacteria (111)
			Proteobacteria (7)
	α4c (143)		Chloroflexi (5)
α4 group (183)		NA£	Acidobacteria (1)
			Bacteriodetes (1)
			Cyanobacteria (1)
	α4c2 (40)		Actinobacteria (40)
			Firmicutes (72)
			Actinobacteria (58)
			Proteobacteria (29)
			Cyanobacteria (8)
		$a = DxHx_{10}Hx_2E$ (186)	Fusobacteria (3)
			Thermotogae (2)
			Cloacimonetes (1)
			Deferribacteres (1)
	E (212)		Deinococcus-Thermus (1)
	α5 (313)		Eirmicutes (78)
			Actinobacteria (34)
			Chloroflexi (5)
			Synergistetes (3)
		$b = DxHx_{10}Hx_{2}H(127)$	Proteobacteria (2)
		10 2 ()	Acidobacteria (1)
			Deinococcus-Thermus (1)
$\alpha 5 \operatorname{aroup}(441)$			Fibrobacteres (1)
a5 group (44 i)			Thermotogae (1)
			Actinobacteria (30)
	α5N (33)		Proteobacteria (2)
			Firmicutes (1)
	α5c (3)		Chloroflexi (1)
	a53 (36)	\neg	Actinobacteria (36)
	400 (00)	\neg	Actinobacteria (5)
			Cvanobacteria (2)
	α54 (11)	ΝΔ£	Firmicutes (2)
			Proteobacteria (1)
		_	Verrucomicrobia (1)
			Proteobacteria (14)
	a55 (31)		Actinobacteria (13) Planctomycetes (2)
	400 (01)		Firmicutes (1)
			Verrucomicrobia (1)
			Proteobacteria (3)
	1000 (5)		Planctomycetes (1)

	1			
				Cloacimonetes (1)
]	Proteobacteria (3)
				Cvanobacteria (2)
		a57 (9)		Actinobacteria (2)
		uor (0)		Planctomycetes (1)
				Nitrospirao (1)
				Firmicutes (109)
				Deinococcus-Thermus (15)
				Proteobacteria (15)
				Cyanobacteria (11)
				Chlorobi (4)
				Spirochaetes (4)
			$a = DxHx_{10}Hx_{2}E(\alpha 5)(169)$	Eusobacteria (3)
				Chloroflevi (2)
				Thormotogao (2)
				Synergistetes (1)
				Acetothermia (1)
		$\alpha 3N_{-}\alpha 5(217)$		Deferribacteres (1)
				Gemmatimonadetes (1)
				Firmicutes (21)
				Actinobacteria (8)
				Proteobacteria (2)
			$D = DXHX_{10}HX_2H(\alpha 5)(34)$	Acidobacteria (1)
1				Cvanobacteria (1)
	MX aroun (280)			Fusobacteria (1)
				Actinobacteria (7)
				Firmioutoo (2)
				Finitcules (3)
			$c = CXH(\alpha 3)(14)$	Spirochaetes (2)
				Bacteroidetes (1)
				Chloroflexi (1)
		α 3N- α 5c (1)		Firmicutes (1)
		$\sim 2N \sim 40$ (1)	NA [≁]	Eirmieutee (1)
		asin-a4c (1)		
				Firmicutes (45)
				Chlorobi (2)
			$a = D x H x$ $H x = (\alpha 5) (52)$	Proteobacteria (2)
			$a = DXI IX_{10} I IX_2 L (a3) (32)$	Spirochaetes (1)
		0 5 (04)		Synergistetes (1)
		α3-α5 (61)		Thermotogae (1)
				Firmicutes (5)
			$b = DxHx_{10}Hx_{2}H(\alpha 5)(7)$	Acidobacteria (1)
				Tenericutes (1)
			$C = C x H x_{c} C (\alpha 3) (2)$	Firmicutes (2)
			$0 = 0 \times 1 \times 20 (0.0) (2)$	Protochastoria (227)
				Fibeobaciena (327)
				Chlorachi (7)
				Cyanobacteria (5)
		α2-α5 (354)		Actinobacteria (1)
				Bacteroidetes (2)
				Fusobacteria (1)
	NM group (381)		NA£	Spirochaetes (1)
				Verrucomicrobia (1)
]	Firmicutes (17)
				Proteobacteria (4)
		00 (07)		Spirochaetes (2)
		α33 (27)		Tenericutes (2)
				Actinobacteria (1)
				Synergistetes (1)
				Eirmioutoo (151)
				Actinobactoria (112)
				Drotoobacteria (102)
				Proteopacteria (102)
				Dacteroidetes (15)
				Spirochaetes (13)
				Planctomycetes (8)
				Chloroflexi (6)
				Acidobacteria (5)
	UN group (540)	None (430)	NA [£]	Cyanobacteria (4)
	, ,	. ,		Deferribacteres (3)
				Aquificae (2)
				Nitrospirae (2)
				Acetothermia (1)
				Dictyoglomi (1)
				Fibrobacteres (1)
				Fusobacteria (1)
				I normotodao (1)

		Verrucomicrobia (1)
		Firmicutes (37)
		Proteobacteria (19)
		Aquificae (14)
		Actinobacteria (10)
		Bacteroidetes (4)
		Chlorobi (4)
		Cyanobacteria (4)
		Caldiserica (2)
		Chloroflexi (2)
	None_C (110)	Chrysiogenetes (2)
		Deferribacteres (2)
		Fusobacteria (2)
		Spirochaetes (2)
		Acidobacteria (1)
		Dictyoglomi (1)
		Synergistetes (1)
		Tenericutes (1)
		Thermotogae (1)
		Verrucomicrobia (1)

[¥] 'x' denotes any amino acid, C = cysteine, D = aspartic acid, H = histidine, E = glutamic acid; small letters (a, b, c, ..., o) denotes different motif types
[£] NA, not applicable

Supplementary Table S3. Distribution of different archaeal and bacterial phyla in seven metal-/nonmetal-binding groups ($\alpha 2$, $\alpha 3$, $\alpha 4$, $\alpha 5$, MX, NM and UN) of the ArsR-SmtB family.

			Archaea (271)			
α2 group (0)	α3 group (82)	α4 group (12)	α5 group (3)	MX group (19)	NM group (1)	UN group (154)
	Euryarchaeota (82)	Crenarchaeota (9)	Euryarchaeota (2)	Euryarchaeota (18) Crenarchaeota (1)	Euryarchaeota (1)	Euryarchaeota (83) Crenarchaeota (62)
		Parvarchaeota (1)				Thaumarchaeota (7)
						Korarchaeota (1)
						Parvarchaeota (1)
			Bacteria (2833)			
α2 group (61)	α3 group (947)	α4 group (183)	α5 group (441)	MX group (280)	NM group (381)	UN group (540)
Proteobacteria (41)	Firmicutes (321)	Actinobacteria (151)	Actinobacteria (178)	Firmicutes (187)	Proteobacteria (331)	Firmicutes (188)
Cyanobacteria (16)	Proteobacteria (229)	Firmicutes (17)	Firmicutes (156)	Proteobacteria (19)	Firmicutes (26)	Actinobacteria (123)
Bacteroidetes (2)	Actinobacteria (184)	Proteobacteria (7)	Proteobacteria (54)	Actinobacteria (15)		Proteobacteria (121)
Firmicutes (2)	Bacteroidetes (63)	Chloroflexi (5)	Spirophacteria (12)	Deinococcus-Thermus (15)	Cyanobacteria (5)	Aquificace (19)
	Chloroflevi (16)	Bacteroidetes (1)	Chloroflexi (6)	Spirochaetes (7)	Actinobacteria (2)	Spirochaetes (15)
	Spirochaetes (13)	Cvanobacteria (1)	Planctomycetes (4)	Chlorobi (6)	Bacteroidetes (2)	Chloroflexi (8)
	Thermotogae (14)		Synergistetes (4)	Eusobacteria (4)	Tenericutes (2)	Cvanobacteria (8)
	Deferribacteres (10)		Fusobacteria (3)	Thermotogae (3)	Fusobacteria (1)	Planctomycetes (8)
	Fusobacteria (9)		Thermotogae (3)	Chloroflexi (3)	Verrucomicrobia (1)	Acidobacteria (6)
	Aquificae (7)		Cloacimonetes (2)	Synergistetes (2)	Synergistetes (1)	Deferribacteres (5)
	Deinococcus-Thermus (7)		Deferribacteres (2)	Acidobacteria (2)		Chlorobi (4)
	Chlorobi (5)		Deinococcus-Thermus (2)	Acetothermia (1)		Fusobacteria (3)
	Verrucomicrobia (5)		Verrucomicrobia (2)	Deferribacteres (1)		Caldiserica (2)
	Planctomycetes (4)		Acidobacteria (1)	Gemmatimonadetes (1)		Chrysiogenetes (2)
	Acidobacteria (3)		Fibrobacteres (1)	I enericutes (1)		Dictyoglomi (2)
	Synergistetes (3)		Nitrospirae (1)	Bacteroidetes (1)		Nitrospirae (2)
	Nitrospirae (2)					Verrucomicrobia (2)
	Tenericutes (2)					Acetothermia (1)
	Thermodesulfobacteria (2)					Fibrobacteres (1)
	Ignavibacteriae (1)					Synergistetes (1)
						Tenericutes (1)

Amino	Archaea		Archaea	1			Bacteria			
Acid	+ Bacteria	All	Euryarchaeota	Crenarchaeota	All	Firmicutes	Proteobacteria	Actinobacteria		
Ala	8.5	5.3	5.5	5.0	8.9	5.5	9.6	13.3		
Arg	7.0	6.8	6.7	7.2	7.0	5.1	7.9	8.6		
Asn	3.1	4.2	4.0	4.6	3.0	4.1	2.9	1.4		
Asp	5.4	5.2	5.8	3.6	5.4	5.8	4.9	5.9		
Cys	2.7	1.7	2.1	0.7	2.8	2.9	2.7	2.4		
Gln	4.3	2.5	2.5	2.2	4.4	4.5	5.4	3.1		
Glu	7.4	9.3	9.7	8.6	7.2	8.3	7.0	6.0		
Gly	4.8	5.0	4.7	5.6	4.8	3.9	4.6	6.6		
His	3.1	2.3	2.4	2.1	3.2	3.7	2.5	3.5		
lle	5.6	7.8	7.6	8.1	5.4	7.3	4.8	3.1		
Leu	13.2	13.1	12.6	14.6	13.2	12.2	14.4	13.2		
Lys	5.7	8.5	8.4	8.4	5.4	8.2	4.6	2.0		
Met	2.9	2.9	3.0	2.7	2.9	3.3	3.1	2.2		
Phe	2.2	2.5	2.4	2.4	2.2	2.8	1.9	1.3		
Pro	3.1	2.3	2.5	1.9	3.2	1.8	3.3	5.3		
Ser	6.7	6.7	6.3	7.7	6.7	6.7	7.0	6.5		
Thr	4.6	3.9	3.9	3.7	4.7	4.4	4.4	5.5		
Trp	0.6	0.7	0.7	0.6	0.6	0.4	0.7	0.5		
Tyr	2.5	3.5	3.3	4.1	2.4	3.0	2.3	1.6		
Val	6.6	5.9	5.8	6.3	6.7	6.2	6.0	8.2		

Supplementary Table S4. Propensities of 20 amino acid residues in the ArsR-SmtB family. Propensities of residues in major phyla of archaea and bacteria are indicated.

Supplementary Table S5. Propensities (in percentage) of 20 amino acids in the ArsR-SmtB family. Propensities of residues in different groups and motifs are shown.

Amino	α2 group α3						a3 grou	roup				α4 group			α5 group								MX grou	р	N	IM grou	p		UN gr	oup	
Acid	All	α2-α52	α2-α53	All	α3	α3N	α3N2	α32	α34	α35	All	α4c	α4c2	All	α5	α5N	α5c	α53	α54	α55	α56	α57	All	α3Ν-α5	α3-α5	All	α2-α5	α33	All	None	None_C
Ala	9.4	9.0	10.3	7.8	6.2	9.5	6.2	7.0	6.7	7.4	12.5	12.5	12.9	9.2	8.3	13.7	6.7	12.5	11.4	9.3	7.4	9.9	7.7	7.9	7.1	9.7	9.9	7.2	7.7	7.9	6.7
Arg	6.9	6.9	6.9	6.1	5.6	6.6	5.8	6.5	5.2	2.6	8.6	8.2	10.2	7.3	6.8	9.0	6.4	9.7	6.8	7.5	6.3	7.7	6.2	6.5	5.4	7.5	7.6	5.8	7.5	7.8	6.1
Asn	3.5	3.5	3.6	3.3	3.7	2.6	1.1	3.6	4.9	4.7	2.3	2.5	1.9	2.4	2.5	1.2	2.2	2.5	2.4	2.2	2.5	2.8	2.9	2.7	3.4	3.1	3.0	4.5	3.7	3.7	3.8
Asp	3.5	3.6	3.3	5.1	5.4	5.2	4.3	5.0	4.2	4.2	6.1	5.8	7.4	6.2	6.4	5.4	5.3	6.3	5.4	5.5	6.3	4.2	6.8	6.8	6.9	4.6	4.6	4.9	5.0	5.0	4.6
Cys	3.5	3.4	3.7	3.9	5.0	3.9	4.1	3.0	4.1	5.2	3.8	3.4	5.2	1.4	1.0	0.8	0.8	0.4	4.1	4.6	4.8	3.9	3.2	3.0	4.0	2.4	2.4	3.6	1.1	0.8	2.4
Gln	6.3	6.6	5.7	4.1	4.5	3.7	6.0	4.2	3.6	5.4	2.7	3.0	1.9	4.4	4.4	4.0	4.7	4.1	4.1	5.2	4.8	3.7	3.9	4.0	3.7	5.8	5.9	4.2	4.0	3.9	4.5
Glu	7.0	7.1	6.9	7.3	7.3	7.1	5.8	7.6	8.1	7.2	5.7	5.8	4.9	7.1	7.6	5.7	7.5	6.5	7.2	5.4	5.0	5.7	8.4	8.4	8.2	7.4	7.5	6.9	7.9	7.9	8.0
Gly	4.4	4.4	4.4	4.6	3.8	5.0	5.6	4.3	4.5	6.0	7.0	7.1	6.9	4.9	4.4	7.8	4.7	5.3	4.5	4.8	4.8	6.5	3.8	3.8	3.6	4.7	4.8	3.8	5.1	5.2	4.6
His	2.0	1.6	2.8	2.6	3.0	2.5	2.8	2.5	2.7	2.5	2.5	2.6	2.3	4.9	5.2	5.5	8.3	5.5	2.6	2.7	3.0	3.1	4.2	4.2	4.3	2.3	2.2	4.3	2.8	2.8	2.8
lle	5.3	5.2	5.3	6.1	6.1	5.2	4.7	6.8	6.6	8.8	3.4	3.3	3.8	5.0	5.8	3.2	7.5	2.9	3.7	3.4	4.6	3.5	6.0	5.7	6.9	4.8	4.7	6.6	6.4	6.3	6.6
Leu	12.8	12.3	14.0	13.4	13.4	13.5	13.9	13.8	11.6	10.8	13.7	13.6	14.0	12.9	12.9	14.5	11.4	10.0	13.9	14.0	13.0	15.0	11.7	12.1	10.3	14.4	14.6	11.7	13.1	13.1	13.2
Lys	4.8	4.9	4.4	6.6	6.9	5.6	4.5	7.4	7.1	8.4	2.0	2.4	0.6	4.4	4.9	0.7	4.2	2.5	4.9	4.3	8.6	4.3	6.7	6.4	7.9	4.7	4.5	6.6	6.5	6.2	8.0
Met	3.0	2.8	3.6	2.7	3.0	2.5	2.8	2.8	2.8	2.4	2.0	2.0	2.0	2.8	2.9	2.0	3.1	2.8	2.8	3.0	4.6	2.8	3.2	3.1	3.2	3.5	3.4	3.8	2.8	2.9	2.6
Phe	2.2	2.5	1.5	2.3	2.6	1.9	2.8	2.4	2.5	3.3	1.4	1.6	0.7	2.2	2.4	0.3	1.9	2.0	1.8	2.0	2.7	2.1	2.7	2.6	3.0	1.6	1.5	2.9	2.5	2.5	2.7
Pro	3.7	3.5	3.9	3.5	3.0	4.1	4.9	3.1	3.2	2.9	4.2	3.9	5.2	3.2	2.9	4.2	3.9	4.0	3.4	4.7	1.3	3.8	1.6	1.8	1.0	2.8	2.8	3.1	3.1	3.2	2.8
Ser	7.5	7.6	7.2	6.7	7.0	6.7	10.9	6.5	6.0	5.3	6.6	6.8	5.7	7.1	7.3	6.4	5.0	6.2	6.8	7.5	6.1	7.0	6.1	6.1	5.9	7.3	7.3	7.6	6.5	6.5	6.6
Thr	4.9	4.6	5.8	4.5	4.5	4.9	7.1	4.0	6.4	4.9	5.8	5.9	5.4	4.5	4.4	5.3	2.8	5.0	6.3	3.4	4.4	5.3	4.1	4.0	4.4	4.4	4.5	3.4	4.6	4.8	4.0
Trp	0.2	0.2	0.1	1.0	1.2	0.9	0.2	1.0	0.8	0.7	0.1	0.1	0.0	0.2	0.2	0.0	0.3	0.5	0.6	0.9	0.2	0.1	0.1	0.1	0.0	0.2	0.2	0.7	0.7	0.7	0.5
Tyr	2.2	2.2	2.3	2.4	2.6	2.2	0.6	2.6	2.2	2.0	2.0	2.0	1.9	2.2	2.3	2.1	3.6	1.4	1.7	1.7	3.0	1.3	2.6	2.5	2.7	2.6	2.6	2.8	2.7	2.7	2.8
Val	7.0	8.2	4.3	5.8	5.1	6.3	6.0	5.7	7.0	5.4	7.5	7.6	7.1	7.7	7.4	8.2	9.7	10.0	5.5	7.9	6.9	7.4	8.2	8.3	8.0	6.0	6.0	5.5	6.3	6.2	6.7

Supplementary Table S6. Protein names and the corresponding UniProt IDs of 10 different metal-binding protein families (MerR, CsoR, CopY, NikR, Fur, DtxR, LysR, GntR, TetR, and MarR) are shown. The sequences of these proteins were used for the PCA and the result is shown in Figure 3D.

	MerR		CsoR		СорҮ	Ni	kR		Fur		DtxR		LysR	Gr	ntR	Те	tR	M	arR
Protein	UniProt	Protein	UniProt	Protein	UniProt	Protein	UniProt	Protein	UniProt	Protein	UniProt	Protein	UniProt	Protein	UniProt	Protein	UniProt	Protein	UniProt
Name	ID	Name	ID	Name	ID	Name	ID	Name	ID	Name	ID	Name	ID	Name	ID	Name	ID	Name	ID
MerR	P0A183	CsoR	P9WP49	CopR	Q9CHA6	NikR	P0A6Z6	Fur	V6F4Q0	ldeR	leR P9WMH1 Oxy		P0ACQ4	GntR	P10585	ComR	P75952	AdcR	Q04102
ZntR	C3SC52	CsoR	O32222	CopY	Q47839	NikR	O25896	PerR	A0A0E0UWH0	MntR	ntR Q99VY1 Mo		P0A9G8 CGL2915 [†] Q8NLM6		Q8NLM6	TetR	A0A081PX32	HucR	Q9RV71
CueR	C3TL37	CsoR	A0A151FPC8	CopY	Q9F683	NikR	D0ZAF0	Fur	Q03456	ScaR	Q9RFN3	FkbR1	Q9KIF0	FadR	P0A8V6	TetR	P0ACT4	SlyA	Q82ZP8
PbrR	Q58AJ5	RcnR	P64530	CopY	A0A081PVW3	NikR	C0Q138	Irr	O85206	TroR	F7IW50	MopA	A0A0M3FG26	CitO	Q2KKB8	HrtR	Q9CHR1	OhrR	034777
SoxR	P0ACS2	DmeR	NA§	CopY	D0R6D0			Mur	Q1MMB4	SirR	Q5HRA0	OxyR	Q5ZZ38	TM0439 [†]	Q9WYS0	XCC2027 [†]	Q8P940	MarR	P27245
MerR	P22874	RicR	O07434					Nur	Q9K4F8	ldeR	P9WMH1	MopB	Q08386	GfcR	A0QUD9	MSMEG_3765 [†]	A0QYS0	ZitR	A2RNS2
CadR	Q93TP7	InrS	Q55554					Zur	Q65HA6	DtxR	WP_010935052 [‡]	LysR	P03030	Rv0494 [†]	P9WMG7	Rv1685c [†]	O33187	MexR	P52003
TipA	P0A4T9	CopU	G2FXW0					Fur	Q65HT6	SloR	I6L923			LIdR	I1Y872	SczA	Q9F8C4	MgrA	P0C1S0
NolA	P22537	FrmR	P0AAP3					FurR	Q8DVA3	MtsR	B4U486			PS5454 [†]	Q87U60	SczA	A0A150NGQ9	SarZ	Q5HDG9
BmrR	P39075	CstR	NA§					FurA	P9WN87					GntR	P46833	SczA	Q8DNK2	Rv2887 [†]	P9WME9
NimR	NP_439766.1 [‡]															PsaR	I6L8Z6		
GolS	Q8ZRG6																		
CoaR	NA§																		
AdhC	P44557																		
NmIR	A0A0U1RJ76																		

§NA = Not Available

[‡]GenBank ID

[†]Gene Name

Supplementary Table S7. (A) Sequence length (aa) distribution of the ArsR-SmtB family proteins. (B) Sequence length (aa) distribution in different archaeal and bacterial metal-/nonmetal-binding groups ($\alpha 2$, $\alpha 3$, $\alpha 4$, $\alpha 5$, MX, NM and UN) of the ArsR-SmtB family.

(A)

Domain	Average	Std. Dev.§
Archaea + Bacteria	114.6	12.7
Archaea	112.8	16.6
Bacteria	114.8	12.3

§Standard Deviation

Arc	haea	Bacteria				
Average	Std. Dev.§	Average	BacteriaAverageStd. Dev.§115.413.8113.811.4121.211.7115.312.2124.26.8111.111.8110.614.3			
-	-	115.4	13.8			
120.0	13.7	113.8	11.4			
117.1	7.1	121.2	11.7			
116.3	20.5	115.3	12.2			
120.1	5.7	124.2	6.8			
107.0	-	111.1	11.8			
107.8	17.6	110.6	14.3			
	Arc Average - 120.0 117.1 116.3 120.1 107.0 107.8	ArchaeaAverageStd. Dev.§120.013.7117.17.1116.320.5120.15.7107.0-107.817.6	ArchaeaBacAverageStd. Dev.§Average115.4120.013.7113.8117.17.1121.2116.320.5115.3120.15.7124.2107.0-111.1107.817.6110.6			

§Standard Deviation

Supplementary Table S8. Sequence lengths (aa) distribution in different archaeal and bacterial groups ($\alpha 2$, $\alpha 3$, $\alpha 4$, $\alpha 5$, MX, NM, and UN) in the ArsR-SmtB family. Each group has multiple classes of motifs and some classes comprised of several sub-classes. Class-specific averages with standard deviations and individual sub-class averages with standard deviations are mentioned, where applicable.

Domain	Group	Class	Sub-class [¥]	Average	Std. Dev.§
		α2-α52	NA£	-	-
	az Group	α2-α53	INA~	-	-
		α3		123.6	10.5
		α3N		124.5	10.5
	a3 Group	α3N2	NIA£	-	-
	as Gloup	α32		108.5	14.6
		α34		-	-
	GroupClassSub-class* $a2$ Group $a2-a52$ $a2-a53$ NA^{f} $a3$ $a3N$ $a3N2$ $a3N2$ $a3N2$ $a3A$ NA^{f} $a3$ Group $a3$ $a4c$ NA^{f} $a4$ Group $a4c$ $a4c2$ NA^{f} $a4$ Group $a4c$ $a4c2$ NA^{f} $a5$ $a56$ $a56$ $a56$ $a56$ $a3N-a5c$ $a3N-a5c$ NA^{f} $a3N-a5c$ $a3N-a5c$ NA^{f} $a1$ Group $a2-a5$ $a3N-a5c$ NA^{f} $a2$ Group $a2-a5$ $a2-a52$ NA^{f} $a2$ Group $a2-a5$ $a2-a52$ NA^{f} $a3$ Group $a2-a5$ $a2-a52$ NA^{f} $a3$ Group $a2-a5$ $a2-a52$ NA^{f} $a3$ Group $a2-a5$ $a2-a52$ NA^{f} $a3$ Group $a2-a5$ $a2-a53$ NA^{f} $a3$ Group $a2-a52$ $a2-a53$ NA^{f} $a3$ Group $a3$ $a = CxCx_2C$ $b = CxCx_3-C$ $c = Cx_3CxC$ $d = Cx_8-GxC$ $e = CCxC$ $f = Cx_6H$ $o = Others$ $a3$ Group $a3N$ $a = C$ $b = CC$ $c = Cx_3C$ $d = Cx_8H$ $e = Cx_{1/2}C$ $f = Cx_6H$ $o = Others$		-	-	
DomainGroupClassSub-cla $a2$ Group $a2-a52$ $a2-a53NAÉa3 Groupa3a3N2a3N2a34NAÉa3 Groupa3a32a34NAÉa4 Groupa4ca4c2NAÉa4 Groupa4ca4c2NAÉa4 Groupa4ca4c2NAÉa4ca55a4a5 Groupa53a56a54a56a56a56a854a3N-a5ca33-a5NM Groupa2-a5a33UN GroupNAÉa2 Groupa2-a52a2-a52a34AEa2 Groupa2-a52a2-a52AAEa3 Groupa2-a52a2-a52AAEa3 Groupa2-a52a2-a52AAEa3 Groupa3a = CxCx_2CCf = CxCCa3 Groupa3a = CxCx_2CCa3 Groupa3a = CxCx_2CCa3 Groupa3a = CxCx_2CCa3 Groupa3a = CxCx_2CCa3a = CxCx_2CCa3a = CxCx_2CCa3a = CxCx_2CCa3a = Cx_2Aa3a = Ca3a = Ca3a = Cx_2Aa3a = Cx_3Ca3a = Cx_3Ca3a = Cx_3Ca3a = Cx_3Ca3a = Cx_3Ca3a = Cx_3C$	ΝΛ£	117.1	7.1		
		-	-		
		α5	_	111.0	-
		<u>α5N</u>		-	-
Archaea		α5c	_	-	-
	α 5 Group	α53	NA [£]	-	-
		α54	_	139.0	-
		α55	-	99.0	-
		α56		-	-
		α3Ν-α5		119.1	5.6
	MX Group	α3N-α5c	ΝΔ£	-	-
	init oroup	α3N-α4c		-	-
		α3-α5		125.3	1.5
	NM Group	α2-α5	NA£	107.0	-
		α33		-	-
	UN Group	None	NA£	106.3	16.2
	Old Gloup	None_C		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	α2 Group	α2-α52	$\begin{array}{c ccccc} & 123.6 & 10.5 \\ 124.5 & 10.5 \\ \hline & & & & \\ 108.5 & 14.6 \\ \hline & & & & \\ 108.5 & 14.6 \\ \hline & & & & \\ 108.5 & 14.6 \\ \hline & & & & \\ 108.5 & 14.6 \\ \hline & & & & \\ \hline & & & & \\ 117.1 & 7.1 \\ \hline & & & & \\ 117.1 & 7.1 \\ \hline & & & & \\ 117.1 & 7.1 \\ \hline & & & & \\ 117.1 & 7.1 \\ \hline & & & & \\ 117.1 & 7.1 \\ \hline & & & & \\ \hline & & & & \\ 117.1 & 7.1 \\ \hline & & & & \\ 119.0 & - & \\ \hline & & & & \\ 139.0 & - & \\ \hline & & & & \\ 139.0 & - & \\ \hline & & & & \\ 139.0 & - & \\ \hline & & & & \\ 139.0 & - & \\ \hline & & & & \\ 139.0 & - & \\ \hline & & & & \\ 139.0 & - & \\ \hline & & & & \\ 139.0 & - & \\ \hline & & & & \\ 139.0 & - & \\ \hline & & & & \\ 119.1 & 5.6 \\ \hline & & & & \\ 199.0 & - & \\ \hline & & & & \\ 119.1 & 5.6 \\ \hline & & & & \\ 119.1 & 5.6 \\ \hline & & & & \\ 119.1 & 5.6 \\ \hline & & & & \\ 119.1 & 5.6 \\ \hline & & & & \\ 119.1 & 5.6 \\ \hline & & & & \\ 119.1 & 5.6 \\ \hline & & & & \\ 119.1 & 5.6 \\ \hline & & & & \\ 119.1 & 5.6 \\ \hline & & & & \\ 110.2 & 31.5 \\ \hline & & & \\ NA^{\pounds} & 106.3 & 16.2 \\ \hline & & & & \\ 112.5 & 10.4 \\ e & & & \\ c & & & \\ c & & & \\ c & &$		
		α2-α53		Sub-class*AverageStd. Dev.§ $ 123.6$ 10.5 124.5 10.5 124.5 10.5 124.5 10.5 124.5 10.5 124.5 10.5 $ -$ <td>9.4</td>	9.4
			$a = CxCx_2C$		10.9
			$b = CxCx_{3-7}C$		
			$c = Cx_3CxC$		
	α3	$d = Cx_{2-8}CxC$	112.5	10.4	
			e = CCxC	113.3	7
			f = CxCC	99.0	-
			Overall	112.0	9.1
Bacteria			a = C	112.5	12.7
	α3 Group		b = CC	123.6	7.6
			$c = Cx_3C$	124.4	8.2
		α3N	$d = Cx_8H$	126.4	8.7
			$e = Cx_{12}C$	126.5	4.4
			$T = CX_5H$	119.7	0.0
			o = Otners	115.9	8.3
		01/0	Overall	118.3	11.5
		$\begin{array}{c cccc} \alpha & \alpha $	116.8	1.5	
		α32	a = CxCx	113.6	12.8

			b = CxCD	109.0	10.1
			$c = CxCx_3D$	107.7	10.9
			d = CxCH	108.9	9.5
			o = Others	108.9	10.0
			Overall	111.0	11.6
		α34	NAF	108.7	11.6
		α35		111.2	8.8
		α4c	NIAF	122.6	11.8
	α4 Group	α4c2		116.2	9.8
			a = DxHx ₁₀ Hx ₂ E	115.0	12.1
		α5	$b = DxHx_{10}Hx_2H$	111.8	11.2
			Overall	113.7	11.8
		α5N		122.5	7.8
	α5 Group	α5c		120.0	12.1
		α53		125.3	10.5
		α54	NA£	114.8	17.4
		α55		116.7	9.8
		α56		105.0	7.1
		α57		106.0	11.6
			a = DxHx ₁₀ Hx ₂ E (α 5)	124.3	6.2
		201 × 5	$b = DxHx_{10}Hx_{2}H (\alpha 5)$	124.4	7.1
		α310-α5	c = CxH (α3)	133.4	11.5
			Overall	124.9	7.1
		α3Ν-α5ς		148.0	-
		α3Ν-α4c		103.0	-
			a = DxHx ₁₀ Hx ₂ E (α 5)	121.7	2.9
		a,2 a,5	$b = DxHx_{10}Hx_{2}H (\alpha 5)$	121.1	2.4
		43-45	$c = CxHx_2C (\alpha 3)$	122.0	-
			Overall	121.6	2.8
		α2-α5	NIAE	110.7	11.6
		α33		115.7	13.1
		None	ΝΛ£	110.3	14.3
	UN Group	None_C		112.1	14.6

[§]Standard Deviation
[¥] 'x' denotes any amino acid, C = cysteine, D = aspartic acid, H = histidine, E = glutamic acid; small letters (a, b, c, ..., o) denotes different motif types
[£] NA, not applicable

Supplementary Table S9. Spearman's rank correlation coefficient (ρ) values obtained by comparing (A) archaea and bacteria, (B) archaea and archaeal classes, and (C) bacteria and bacterial classes. In archaea, $\alpha 2$, $\alpha 5$ and NM classes were not used for calculation as the number of sequences in those groups was below five. The analysis was performed using the data shown in Supplementary Figure S4.

(A)

	All	Bacteria	Archaea
All	1.00	0.98	0.77
Bacteria		1.00	0.79
Archaea			1.00

(B)

	Archaea	α3	α4	MX	UN
Archaea	1.00	0.54	0.29	-0.11	0.64
α3		1.00	0.86	0.75	-0.07
α4			1.00	0.69	-0.18
МХ				1.00	-0.79
UN					1.00

(C)

	Bacteria	α2	α3	α4	α5	MX	NM	UN
Bacteria	1.00	0.66	0.96	0.86	1.00	0.16	0.93	0.89
α2		1.00	0.66	0.52	0.66	0.07	0.63	0.48
α3			1.00	0.79	0.96	0.05	0.89	0.93
α4				1.00	0.86	0.63	0.64	0.61
α5					1.00	0.16	0.93	0.89
MX						1.00	-0.23	-0.30
NM							1.00	0.93
UN								1.00

Supplementary Table S10. Analysis of sequence similarity networks (SSNs) of the ArsR-SmtB family proteins. In total, 62 amino acid sequences (obtained from Table 2) of the ArsR-SmtB family proteins were used to construct networks based on sequence similarities (SSNs). Nodes represent the ArsR-SmtB family protein sequences and the edge lengths represent the sequence similarities. Detailed sequence information with the group, motif, UniProt ID, gene or protein name, organism name, domain, phylum, node number (as shown in Figure 9) and the number of edges, depending on the alignment score stringency (10⁻⁵, 10⁻¹⁰, 10⁻¹⁵ and 10⁻²⁰), are given.

Crown	Na	Matif	Motif UniProt ID	Protein /	Protein / Organism	Domoin	Dhudum	Node	Edges [‡]			
Group No.	NO.	WOUI	UniProt ID	Gene Name	Organism	Domain	Phylum	No.†	10 -5	10 ⁻¹⁰	10 ⁻¹⁵	10 ⁻²⁰
		α2-α53	Q8Z4F5	STY2917	Salmonella typhi	Bacteria	Proteobacteria					
a 2 group	1-3	α2-α5	P52695	HlyU	Vibrio cholerae	Bacteria	Proteobacteria	26	26	7	0	0
uz group		None	Q83TD2	NoIR	Rhizobium fredii	Bacteria	Proteobacteria					
	4	α2-α52	D6CMI1	AioF	Thiomonas arsenitoxydans	Bacteria	Proteobacteria	38	14	1	0	0
	5	α3	Q5KUX7	ArsR1	Geobacillus kaustophilus	Bacteria	Firmicutes	1	37	27	3	0
	6	α3	C7NYS3	Hmuk_2504	Halomicrobium mukohataei	Archaea	Euryarchaeota	2	37	21	1	0
		α3	P15905	ArsR	Escherichia coli	Bacteria	Proteobacteria					
	7-9	α55	D7H7R8	VCRC385_01870	Vibrio cholerae	Bacteria	Proteobacteria	17	30	12	2	0
		α32	A0A0A7HMJ3	ArsR1	Pantoea sp.	Bacteria	Proteobacteria					
	10	α3	S0AS94	ArsR	Ferroplasma acidarmanus	Archaea	Euryarchaeota	25	27	10	1	0
a 3 group	11-	α32	Q46BU5	Mbar_A1705	Methanosarcina barkeri	Archaea	Euryarchaeota	12	33	10		0
	12	α3	D5E6K8	Mmah_1294	Methanohalophilus mahii	Archaea	Euryarchaeota	12	32	13	3	0
	13	α3	P30338	ArsR	Staphylococcus aureus	Bacteria	Firmicutes	24	27	10	0	0
	14	α32	G7WP58	Mhar_1538	Methanosaeta harundinacea	Archaea	Euryarchaeota	8	33	14	0	0
	15	α32	A1XP68	ArsR1	Ochrobactrum tritici	Bacteria	Proteobacteria	32	21	6	1	0
	16	α32	A5JSW5	ArsRC	Leptospirillum ferriphilum	Bacteria	Nitrospirae	35	18	3	1	0
as group	17-	α3N	P71941	Rv2642	Mycobacterium tuberculosis	Bacteria	Actinobacteria	2	25	24	2	0
	18	α3N	Q1HW04	ArsR2	Streptomyces sp.	Bacteria	Actinobacteria	3	35	24	3	
	19	α 3N	P20047	CadC	Staphylococcus aureus	Bacteria	Firmicutes	20	30	13	3	0
	20	α 3N	F0LM33	TERMP_00904	Thermococcus barophilus	Archaea	Euryarchaeota	19	30	8	0	0
	21	α 3N	O52029	ArsR1	Halobacterium salinarum	Archaea	Euryarchaeota	30	22	7	1	1
	22	α3N	O52026	ArsR2	Halobacterium salinarum	Archaea	Euryarchaeota	34	19	8	1	1
	23	α3N2	Q8NTP5	ArsR2	Corynebacterium glutamicum	Bacteria	Actinobacteria	14	32	8	1	0
	24	α34	Q1HW01	ArsR1	Streptomyces sp.	Bacteria	Actinobacteria	15	31	8	0	0
	25	α34	D3PAR7	DEFDS_0179	Deferribacter desulfuricans	Bacteria	Deferribacteres	28	24	5	0	0
	26-	α35	H8XU33	KQS_04180	Flavobacterium indicum	Bacteria	Bacteroidetes	20	10	0	4	
	27	α55	A6L7W8	ArsR	Bacteroides vulgatus	Bacteria	Bacteroidetes	30	18	2	1	0
	28	α32	A0A1B3X802	ArsR	Campylobacter coli	Bacteria	Proteobacteria	23	28	12	0	0
	29	α4c	Q4J865	Saci_1710	Sulfolobus acidocaldarius	Archaea	Crenarchaeota	4	35	18	1	0
α4 group	30-	α4c	P9WMI9	CmtR	Mycobacterium tuberculosis	Bacteria	Actinobacteria	20		0	0	_
	31	α4c2	Q9RD34	CmtR	Streptomyces coelicolor	Bacteria	Actinobacteria	29	24	2	U	U
	32	α5	O85142	CzrA	Staphylococcus aureus	Bacteria	Firmicutes	22	29	14	2	1
α5 group	33	α53	O53838	KmtR	Mycobacterium tuberculosis	Bacteria	Actinobacteria	21	30	15	2	0
	34	α54	Q8PZ32	MM_0662	Methanosarcina mazei	Archaea	Euryarchaeota	16	31	14	0	0

	35	α54	Q9L209	SCO6823	Streptomyces coelicolor	Bacteria	Actinobacteria	33	21	1	0	0
	36	α54	НОНННО	ArsR1	Agrobacterium tumefaciens	Bacteria	Proteobacteria	42	5	1	0	0
	37	α55	A9A197	Nmar_0487	Nitrosopumilus maritimus	Archaea	Thaumarchaeota	27	25	15	1	0
	38	α56	B6WXY3	DESPIG_02964	Desulfovibrio piger	Bacteria	Proteobacteria	6	34	15	1	0
	39-	α5N	O69711	NmtR	Mycobacterium tuberculosis	Bacteria	Actinobacteria	20	11	6	2	0
	40	α5c	D6TY78	Krac_4094	Ktedonobacter racemifer	Bacteria	Chloroflexi	39	11	0	2	0
	41	α57	E6XPL1	ArsR	Shewanella putrefaciens	Bacteria	Proteobacteria	31	22	3	0	0
		α 3N	A6URK8	Mevan_1232	Methanococcus vannielii	Archaea	Euryarchaeota					
	42-	α3Ν-α5	D1YYC1	MCP_1371	Methanocella paludicola	Archaea	Euryarchaeota	12	22	22	0	2
	45	α3-α5	G7V7Y6	Tlie_0487	Thermovirga lienii	Bacteria	Synergistetes	15	32	22	9	3
		α3-α5	D3E3S3	mru_1334	Methanobrevibacter ruminantium	Archaea	Euryarchaeota					
	46	α3Ν-α5	I0RKP2	MXEN_15450	Mycobacterium xenopi	Bacteria	Actinobacteria	10	33	20	1	0
		α3N	Q8ZS91	AztR	Nostoc sp.	Bacteria	Cyanobacteria					
	47	α5	P30340	SmtB	Synechococcus elongatus	Bacteria	Cyanobacteria					
MX group	47- 51	α3Ν-α5	Q76L30	BxmR	Oscillatoria brevis	Bacteria	Cyanobacteria	18	30	19	4	3
	51	α3Ν-α5	Q55940	ZiaR	Synechocystis sp.	Bacteria	Cyanobacteria			1		
		α3Ν-α5	D9SQ59	Clocel_0346	Clostridium cellulovorans	Bacteria	Firmicutes					
		α5	Q0W2G2	RCIX2336	Methanocella arvoryzae	Archaea	Euryarchaeota					
	52-	α3-α5	G5GIP9	HMPREF9333_01439	Johnsonella ignava	Bacteria	Firmicutes	5	24	21	7	4
	55	α3-α5	Q0W191	RRC76	Methanocella arvoryzae	Archaea	Euryarchaeota	5	34	21		4
		α3-α5	C6D253	Pjdr2_3307	Paenibacillus sp.	Bacteria	Firmicutes					
	56	α3Ν-α5	H3ZMT0	OCC_05651	Thermococcus litoralis	Archaea	Euryarchaeota	11	33	22	4	3
NINA	57	α2-α5	G0HMP2	GQS_02890	Thermococcus sp.	Archaea	Euryarchaeota	37	15	1	0	0
	58	α33	A9KR37	Cphy_0116	Lachnoclostridium phytofermentans	Bacteria	Firmicutes	9	33	16	2	0
group	59	α33	A4Q186	CyeR	Corynebacterium glutamicum	Bacteria	Actinobacteria	41	6	1	0	0
	60	None_C	D1YW18	MCP_0568	Methanocella paludicola	Archaea	Euryarchaeota	7	34	14	0	0
UN group	61	None_C	Q9HW47	PyeR	Pseudomonas aeruginosa	Bacteria	Proteobacteria	40	9	1	0	0
	62	None	O58788	PH1061	Pyrococcus horikoshii	Archaea	Euryarchaeota	43	1	0	0	0

[†]Node number (from Figure 9) [‡]Number of edges connected to a particular node (alignment score stringency, from 10⁻⁵ to 10⁻²⁰, see Figure 9)