## **Supporting Information**

## for

## Tetrathiomolybdate Inhibits the Reaction of Cisplatin with Human Copper Chaperone Atox1



**Fig. S1** Formation of the trimeric TM-Cu-Atox1 complex. (A) Analytical size exclusion chromatography analysis of apo-Atox1 (red) and TM-Cu-Atox1 complex (blue). The TM-Cu-Atox1 complex was prepared by incubation of 800  $\mu$ M Cu-Atox1 with 320  $\mu$ M TM for 2 hours. The main peak of TM-Cu-Atox1 appears at the position corresponding to trimeric species. In comparison, the apo-Atox1 appears as a monomeric protein. (B) Electrophoresis analysis on native agarose gel. 1: Cu-Atox1; 2: Cu-Atox1+ 0.4 TM. A 0.8% agarose gel was used in 25 mM Tris-Cl buffer (pH 8.5, 19.2 mM glycine).



**Fig. S2** Lineshape of representative NMR signals. The slices of <sup>1</sup>H dimension were taken from <sup>1</sup>H <sup>15</sup>N HSQC spectra in Fig. 2B. (A) G28; (B) V29; (C) V62. The color of lines denotes the signal of Cu-Atox1 in the absence (black) or in the presence (red) of TM.



**Fig. S3** <sup>1</sup>H-<sup>15</sup>N HSQC NMR spectra of the TM-Cu-Atox1 complex incubated with 1.3 eq. of cisplatin for 2 h (blue) and 8 h (red). The two sets of peaks are well overlapped. This result shows that no reaction occurs between TM-Cu-Atox1 and cisplatin even after 8 h incubation.



**Fig. S4** Effect of TM on the aggregation of apo-Atox1 induced by cisplatin. The reactions were conducted using 300  $\mu$ M apo-Atox1 or [TM + apo-Atox1] and 1.3 molar equivalents of cisplatin. The sample of [TM + apo-Atox1] was prepared by incubation of 300  $\mu$ M apo-Atox1 with equimolar TM for 2 h. Samples were analyzed using Tricine-SDS-PAGE analyses after 8, 12 or 24 h incubation (reaction time is labeled). The results show that TM does not inhibit the aggregation of apo-Atox1.



**Fig. S5** Effect of TM on cisplatin binding to Ag-Atox1 monitored by  ${}^{1}H_{-}{}^{15}N$  HSQC spectroscopy. (A) Spectra of Ag-Atox1 before (black) and after (green) reaction with cisplatin (1.3 eq. for 8 h). (B) Spectra of the mixture of Ag-Atox1 and 0.4 eq. TM before (red) and after (blue) reaction with cisplatin (1.3 eq. for 8 h). A 0.5 mM concentration of  ${}^{15}N$ -labeled protein was used in all these NMR experiments.



**Fig. S6** Size exclusion chromatographic analysis of Ag-Atox1 in the absence and in the presence of TM. Ag-Atox1 was prepared by incubation of 200  $\mu$ M apo-Atox1 (in 20 mM HEPES, 150 mM NaNO<sub>3</sub>, pH 7.4) with 300  $\mu$ M AgNO<sub>3</sub> in the presence of 1 mM DTT for 15 minutes. The [TM + Ag-Atox1] sample was prepared by incubation of 200  $\mu$ M Ag-Atox1 (in 20 mM HEPES, 150 mM NaNO<sub>3</sub>, pH 7.4) with 80  $\mu$ M TM for 2 h.

Table S1. ICP-MS snalysis of metal concentrations in the TM-Cu-Atox1 complex

| Species*                   | Monomer |      |      | Trimer |      |      | Oligomer |      |      |
|----------------------------|---------|------|------|--------|------|------|----------|------|------|
|                            | Atox1   | Cu   | Мо   | Atox1  | Cu   | Мо   | Atox1    | Cu   | Мо   |
| Concentration (µM)         | 0.63    | 0.32 | 0.00 | 3.43   | 4.41 | 1.33 | 4.43     | 3.62 | 1.01 |
| Relative ratio to<br>Atox1 | 1.00    | 0.51 | 0.00 | 1.00   | 1.29 | 0.39 | 1.00     | 0.82 | 0.23 |

\* The fractions corresponding to the three peaks in Fig. S1 were collected from the size exclusion chromatographic apparatus.

| Table S2. ESI-MS spectra analyses of the platination adducts of Cu-Atox1 |
|--------------------------------------------------------------------------|
|--------------------------------------------------------------------------|

|   |                                                             | -                   |                |
|---|-------------------------------------------------------------|---------------------|----------------|
|   | Composition                                                 | Observed <i>m/z</i> | Calculated m/z |
| 1 | [Atox1+6H] <sup>6+</sup>                                    | 1279.47             | 1279.90        |
| 2 | [Atox1+Cu+5H] <sup>6+</sup>                                 | 1290.41             | 1290.30        |
| 3 | [Atox1+Cu+2Na+3H] <sup>6+</sup>                             | 1296.80             | 1297.63        |
| 4 | [Atox1+Pt(NH <sub>3</sub> ) <sub>2</sub> +4H] <sup>6+</sup> | 1317.64             | 1317.80        |
| 5 | $[Atox1+Pt(NH_3)_2+H_2O+4H]^{6+}$                           | 1321.47             | 1320.80        |