Supporting Information

for

Calprotectin influences the aggregation of

metal-free and metal-bound amyloid- β by direct interaction

Hyuck Jin Lee,§a Masha G. Savelieff,§b Juhye Kang,ac Megan Brunjes Brophy,d

Toshiki G. Nakashige,^d Shin Jung C. Lee,^c Elizabeth M. Nolan*^d and Mi Hee Lim*^a

^aDepartment of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea ^bSciGency Science Communications, Ann Arbor, MI 48104, USA ^cDepartment of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea ^dDepartment of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA

*To whom correspondence should be addressed: miheelim@kaist.ac.kr and Inolan@mit.edu

[§]These authors contributed equally to this work.

Table of Contents

Experimental

Preparation a	and biochemical characterization of S100B $_{\Delta}$	S3
Fig. S1	Characterization of S100B $_{\Delta}$	S7
Fig. S2	Influence of CP-Ser on metal-free $A\beta_{40}$ aggregation kinetics	S8
Fig. S3	Effects of CP-Ser and CP-Ser_{\Delta\!\Delta} on A β_{40} aggregation	
	in the presence of excess Zn(II)	S9
Fig. S4	Influence of S100 proteins on the aggregation of	
	both metal-free A β_{42} and metal–A β_{42}	S10
Fig. S5	ESI-MS analyses of the samples containing	
	Aβ ₄₀ , Cu(II), and CP-Ser	S11
Fig. S6	Analysis of the resultant $A\beta_{40}$ species upon treatment	
	with S100 proteins in the presence of metal ions	S12
Fig. S7	Analysis of the resultant $A\beta_{40}$ species upon addition of	
	S100 with sub-stoichiometric amounts of metal ions	S13
Fig. S8	ESI-MS analyses of metal-free A $\beta_{40},$ S100B, and metal-free A β_{40}	
	treated with S100B	S14
Fig. S9	Dot blot assay of 8 h-incubated CP-Ser with and without $A\beta_{40}$	S15
Fig. S10	Viability of SH-SY5Y (5Y) cells incubated with CP-Ser, A β ,	
	and/or metal ions	S16

Experimental

Preparation and biochemical characterization of $S100B_{\Delta}$

Design of the synthetic gene for S100B_{Δ}. To obtain the protein variant where the metalbinding residues are mutated to the non-coordinating Ala residues, a synthetic gene containing an *E. coli*-optimized sequence for *S100B(H16A)(H26A)(H86A)(E90A)* was designed and purchased from DNA2.0 (now ATUM). The synthetic gene contained an *N*terminal *Ndel* restriction site and a *C*-terminal stop codon followed by a *Xhol* restriction site. The gene was ligated into the *Ndel* and *Xhol* sites of pET41a by DNA2.0.

Ndel-S100B_△-STOP-Xhol

<u>CATATG</u>AGCGAGTTGGAGAAAGCGATGGTTGCCCTGATTGACGTTTTTGCACAGTA CAGCGGTCGTGAGGGCGATAAGGCTAAGCTGAAGAAAAGCGAGCTGAAAGAACTG ATCAACAACGAACTGTCCCACTTCCTGGAAGAAATCAAAGAACAGGAAGTCGTGGA CAAAGTTATGGAAACGCTGGATAATGATGGTGACGGCGAGTGTGACTTTCAAGAATT CATGGCGTTTGTCGCGATGGTGACCACCGCGTGCGCCGAGTTCTTCGCACACGAG **TAA**CTCGAG

The restriction sites are underlined; the stop codon is in bold font.

Translation

<u>HM</u>SELEKAMVALIDVF<mark>A</mark>QYSGREGDK<mark>A</mark>KLKKSELKELINNELS HFLEEIKEQEVVDKVMETLDNDGDGECDFQEFMAFVAMVTT AC<mark>A</mark>EFF<mark>A</mark>HE**STOP**LE

The restriction sites are underlined; the stop codon is in bold font; the mutated residues are highlighted in yellow.

Preparation of S100B_Δ. S100B_Δ [S100B(H16A)(H26A)(H86A)(E90A)] was overexpressed and purified as described previously for S100B.¹ The pET41a-*S100B(H16A)(H26A)(H86A)(E90A)* plasmid was obtained from DNA2.0, dissolved in 20 μ L Milli-Q water, and transformed into chemically competent *E. coli* BL21(DE3) cells. The cells were incubated at 37 °C overnight, and freezer stocks were prepared with 25% glycerol and stored at -80 °C. Purified S100B_Δ was obtained as the apo homodimeric protein and was stored in buffer containing 5 mM DTT (20 mM HEPES, pH 8.0, 100 mM NaCl, 5 mM DTT). Protein concentrations are reported as the homodimer determined using the extinction coefficient (ϵ_{280} = 2980 M⁻¹ cm⁻¹) from the ExPASy ProtParam online tool.

Biochemical characterization of S100B_{Δ}. S100B_{Δ} was characterized by mass spectrometry, SDS-PAGE, circular dichroism (CD) spectroscopy, and analytical size exclusion chromatography (SEC). Together, the data are in agreement with expectations based on S100B and other S100 proteins, and indicate that S100B_{Δ} was obtained in high purity as an α -helical, homodimeric protein.

<u>Mass spectrometry</u>: The identity of S100B_{Δ} was confirmed by liquid chromatography mass spectrometry (LC-MS) using an Agilent Poroshell 300SB-C18 column on an Agilent 1260 LC system with an Agilent Jetstream ESI following a protocol as previously described.² The calculated masses of the S100B monomer are 10,456.8 (+Met1) and 10,325.6 Da (-Met1), and the masses 10,456.96 Da and 10,325.62 Da (-Met1) were observed.

S4

<u>Purity</u>: The purity of S100B_{Δ} was evaluated by SDS-PAGE gel (15% Tris-glycine gel), which revealed one major band at *ca*. 10 kDa (Fig. S1a).

<u>Secondary structure</u>: CD spectroscopy was conducted using an Aviv Model 202 CD spectrometer housed in the MIT Biophysical Instrumentation Facility. CD spectra of 10 μ M S100B_{Δ} in 1 mM Tris, pH 8.5, 0.5 mM EDTA in the absence and presence of CaCl₂ (2 mM) were collected. These spectra are consistent with α -helical secondary structure, as expected for the S100 protein (Fig. S1b).

<u>Quaternary structure</u>: Analytical SEC was conducted using an ÅKTA purification system with a Superdex 75 10/300 GL column (GE Healthcare Life Sciences), and the column was calibrated using a low-molecular-weight protein standard calibration (GE Healthcare Life Sciences) described previously.² The protein (100 μ L, 100 μ M) was analyzed by SEC in 75 mM HEPES, pH 7.5, 100 mM NaCl, 5 mM DTT in absence and presence of CaCl₂ (2 mM) in the running buffer. The variant elutes at 11.8 mL (–Ca(II)) and 12.0 mL (+Ca(II)), consistent with the formation of the 21.0-kDa homodimer under both low and high Ca(II) conditions (Fig. S1c and d).

References

1 M. B. Brophy, T. G. Nakashige, A. Gaillard and E. M. Nolan, Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin, *J. Am. Chem. Soc.*, 2013, **135**, 17804–17817. 2 M. B. Brophy, J. A. Hayden and E. M. Nolan, Calcium ion gradients modulate the zinc affinity and antibacterial activity of human calprotectin, *J. Am. Chem. Soc.*, 2012, **134**, 18089–18100.

Fig. S1 Characterization of S100B_{Δ}. (a) SDS-PAGE gel (15% Tris-glycine) of S100B_{Δ}. (b) CD spectra of S100B_{Δ} (10 μ M) in 1 mM Tris, pH 8.5, 0.5 mM EDTA in the absence (black line) and presence (red line) of CaCl₂ (2 mM). (c) Analytical SEC chromatograms of S100B_{Δ} (100 μ L, 100 μ M) in 75 mM HEPES, pH 7.5, 100 mM NaCl, 5 mM DTT in the absence (black line) and presence (red line) of CaCl₂ (2 mM) in CaCl₂ (2 mM) in the running buffer. (d) Zoom-in view of analytical SEC chromatograms.

Fig. S2 Influence of CP-Ser on metal-free A β_{40} aggregation kinetics, observed by the ThT assay. Conditions: [A β_{40}] = 20 μ M; [CP-Ser] = 20 μ M; [ThT] = 20 μ M; pH 7.4; 37 °C; constant agitation.

Fig. S3 Effects of CP-Ser and CP-Ser_{ΔΔ} on Aβ₄₀ aggregation in the presence of excess Zn(II). (a) Scheme of the experiment. (b) Determination of the degree of β-sheet-rich Aβ₄₀ aggregates formation, observed by the ThT assay, from the 24 h incubated Aβ₄₂ samples with CP-Ser and CP-Ser_{ΔΔ} in the presence of 2, 5, and 10 equiv of Zn(II). Fluorescence intensities of ThT from the samples were normalized by comparison to the metal-free Aβ₄₀ sample (shown in Fig. 1). Conditions: [Aβ₄₀] = 20 μM; [ZnCl₂] = 40, 100, and 200 μM; [CP-Ser and CP-Ser_{ΔΔ}] = 20 μM; pH 7.4; 24 h incubation; 37 °C; constant agitation.

Fig. S4 Influence of S100 proteins on the aggregation of both metal-free A_{β42} and metal-A_{β42}. (a) Scheme of the experiment. (b) Analysis of the degree of β-sheet-rich A_{β42} aggregates formation, monitored by the ThT assay, from the 24 h incubated A_β samples with CP-Ser, CP-Ser_{ΔΔ}, S100B, and S100B_Δ. (c) [CP-Ser and CP-Ser_{ΔΔ}] or (d) [S100B and S100B_Δ], monitored through TEM. The inset images represent minor species. Conditions: [A_{β42}] = 20 µM; [ZnCl₂ or CuCl₂] = 2 or 20 µM; [S100 proteins] = 20 µM; pH 7.4 (for metal-free and Zn(II) experiments) or pH 6.6 (for Cu(II) experiments); 24 h incubation; 37 °C; constant agitation. Scale bar = 500 (black) or 200 (white) nm.

Fig. S5 ESI-MS analyses of the samples containing A β_{40} , Cu(II), and CP-Ser. The ESI-MS spectra for +3-charged monomers of A β_{40} with and without treatment of CP-Ser and Cu(II). Two different addition orders of A β_{40} , Cu(II), and CP-Ser: (i) A β_{40} treated with Cu(II) followed by addition of CP-Ser; (ii) CP-Ser treated with Cu(II) followed by A β_{40} . Conditions (final concentrations): [A β_{40}] = 5 μ M; [CuCl₂] = 5 μ M; [CP-Ser] = 5 μ M; pH 7.5; 1 h incubation; 37 °C; no agitation.

Fig. S6 Analysis of the resultant A_{β40} species upon treatment with S100 proteins in the presence of metal ions. A_{β40} species produced after 24 h incubation with or without the proteins with 1 equiv of (a) Zn(II) or (b) Cu(II), visualized by the gel/Western blot using an anti-A_β antibody (6E10; gray gels) or an anti-S100A9 antibody (blue gels; CP-Ser and CP-Ser_{ΔΔ}) as well as Coomassie blue staining (blue gels; S100B and S100B_Δ). Lanes: (Control, <u>C</u>) [A_{β40} + M(II)]; (1) [M(II) + S100 proteins]; (2) (<u>C</u>) + S100 proteins. Conditions: [A_{β40}] = 20 μM; [ZnCl₂ or CuCl₂] = 20 μM; [S100 proteins] = 20 μM; pH 7.4 (for metal-free and Zn(II) experiments) or pH 6.6 (for Cu(II) experiment); 24 h incubation; 37 °C; constant agitation.

Fig. S7 Analysis of the resultant $A\beta_{40}$ species upon addition of S100 with substoichiometric amounts of metal ions. $A\beta_{40}$ species generated after 24 h incubation with or without the proteins with 0.1 equiv of (a) Zn(II) or (b) Cu(II), visualized by the gel/Western blot using an anti-A β antibody (6E10; gray gels) or an anti-S100A9 antibody (blue gels; CP-Ser and CP-Ser_{AA}) as well as Coomassie blue staining (blue gels; S100B and S100B_A). Lanes: (Control, <u>C</u>) [A β_{40} + M(II)]; (1) [M(II) + S100 proteins]; (2) (<u>C</u>) + S100 proteins. Conditions: [A β_{40}] = 20 µM; [ZnCl₂ or CuCl₂] = 2 µM; [S100 proteins] = 20 µM; pH 7.4 (for metal-free and Zn(II) experiments) or pH 6.6 (for Cu(II) experiment); 24 h incubation; 37 °C; constant agitation.

Fig. S8 ESI-MS analyses of metal-free A β_{40} (top), S100B (middle), and metal-free A β_{40} treated with S100B (bottom) for monitoring the interaction between S100B and A β_{40} . Conditions (final concentrations): [A β_{40}] = 5 μ M; [S100B] = 5 μ M; pH 7.5; 24 h incubation; 37 °C; no agitation.

Fig. S9 Dot blot assay of the pre-incubated (for 8 h) CP-Ser with and without A β_{40} before incubation with SH-SY5Y (5Y) cells. The resultant A β_{40} species were monitored by an anti-A β antibody (6E10), an anti-amyloid oligomer antibody (A11), and an anti-amyloid fibril antibody (OC). Conditions: [A β_{40}] = 20 μ M; [CP-Ser] = 20 μ M; pH 7.4; incubation for 8 h; 37 °C.

Fig. S10 Viability of SH-SY5Y (5Y) cells incubated with CP-Ser, A β , and/or metal ions. CP-Ser pre-treated with or without (a) A β_{40} and (b) A β_{42} in both the absence and presence of metal ions for 8 h was incubated with 5Y cells for 6 and 24 h. Cytotoxicity was measured by the MTT assay. The viability values were calculated by comparison to cells treated with a volume of H₂O equal to the protein added. Error bars represent the standard error from three independent experiments. Conditions (final concentrations): [CP-Ser] = 5 μ M; [A β] = 5 μ M; [ZnCl₂ or CuCl₂] = 5 μ M.