Supplementary Information

Short oligopeptides with three cysteine residues as models of sulphur-rich $\mathrm{Cu}(\mathrm{I})$ - and $\mathrm{Hg}(\mathrm{II})$-binding sites in proteins

Edit Mesterhazy, ${ }^{\text {a,b }}$ Colette Lebrun, ${ }^{\text {a }}$ Serge Crouzy, ${ }^{\text {c }}$ Attila Jancso, ${ }^{\text {b } * ~ P a s c a l e ~ D e l a n g l e ~}{ }^{\mathrm{a} *}$
${ }^{\text {a }}$ INAC/SYMMES/Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
${ }^{\text {b }}$ Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged
H-6720, Hungary
${ }^{\text {c }}$ BIG/LCBM/Université Grenoble Alpes, CEA, CNRS, (UMR 5249), 38000 Grenoble, France

Table S1. Analytical HPLC and (+)ESI-MS references of the peptides

Name	$t_{\mathrm{r}}(\mathrm{min})$	Chemical formula	Molecular weight $(\mathrm{g} / \mathrm{mol})$	m / z $[\mathrm{M}+2 \mathrm{H}]^{2+}$	m / z $[\mathrm{M}+\mathrm{H}]^{+}$
$\mathbf{P}^{3 \mathrm{C}}$	10.1	$\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{~N}_{13} \mathrm{O}_{13} \mathrm{~S}_{3}$	951.34	476.8	952.4
$\mathbf{1}^{\mathbf{C}}$	10.7	$\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{~N}_{13} \mathrm{O}_{13} \mathrm{~S}_{3}$	951.34	476.8	952.3
$\mathbf{1}^{\mathbf{L}}$	10.5	$\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{~N}_{14} \mathrm{O}_{14} \mathrm{~S}_{3}$	1010.37	506.3	1011.4
$\mathbf{2}^{\mathbf{C}}$	10.9	$\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{~N}_{13} \mathrm{O}_{13} \mathrm{~S}_{3}$	951.34	476.7	952.3
$\mathbf{2}^{\mathbf{L}}$	10.4	$\mathrm{C}_{36} \mathrm{H}_{62} \mathrm{~N}_{14} \mathrm{O}_{14} \mathrm{~S}_{3}$	1010.37	506.7	1011.4
$\mathbf{3}^{\mathbf{C}}$	10.8	$\mathrm{C}_{37} \mathrm{H}_{62} \mathrm{~N}_{14} \mathrm{O}_{14} \mathrm{~S}_{3}$	1022.37	512.3	1023.3

Figure S1. Analytical HPLC chromatogram and (+)ESI-MS spectra of the studied peptides

Figure S2. CD titration of $\mathbf{1}^{\mathrm{C}}$ with $\mathrm{Cu}(\mathrm{I})\left(c_{\text {peptide }}=30 \mu \mathrm{M}\right)$ in phosphate buffer 20 mM , $\mathrm{pH}=7.4+10 \mathrm{~V} / \mathrm{V} \% \mathrm{AcN}$. The upper panel shows the spectra with 0.0-2.0 equivalents of $\mathrm{Cu}(\mathrm{I})$ and the lower with 2.0-3.0 equivalents.

C) Experimental and calculated isotopic patterns

Figure S3. (+) ESI-MS spectra recorded for $\mathbf{1}^{\mathrm{C}}$ with $\mathrm{Cu}(\mathrm{I}) . c_{\text {peptide }}=100 \mu \mathrm{M}$ in $\mathrm{NH}_{4} \mathrm{AcO}$ buffer $20 \mathrm{mM}, \mathrm{pH}=7.0+10 \mathrm{~V} / \mathrm{V} \% \mathrm{AcN}$. A) $0.9 \mathrm{Cu}(\mathrm{I})$ equiv. B) $2.0 \mathrm{Cu}(\mathrm{I})$ equiv. C) Experimental and calculated isotopic patterns of the main cluster species. The notation $\mathbf{1}^{\mathbf{C}}$ refers here to the neutral free peptide.

Figure S4. Molar spectra of the $\mathrm{Hg}(\mathrm{II})-\mathrm{I}^{-}$complexes at $\mathrm{pH}=2.0$ obtained by SPECFIT.

Calculation of the formation constants of the HgHL and HgL complexes

Thermodynamic formation constants for the mono-protonated and parent Hg (II)-complexes were estimated from the apparent stabilities of the HgP mononuclear complexes determined at $\mathrm{pH}=2.0$. These calculations involve the stepwise proton dissociation constants $\left(K_{\mathrm{a}}^{\mathrm{HL}}, K_{\mathrm{a}}^{\mathrm{H}_{2} \mathrm{~L}}\right.$, $K_{\mathrm{a}}^{\mathrm{H}_{3} \mathrm{~L}}$) of the ligands, expressed in a form of the overall formation (association) constant, $\beta_{\mathrm{H}_{3} \mathrm{~L}}$, of the fully protonated peptides:

$$
\begin{equation*}
\frac{\left[\mathrm{H}_{3} \mathrm{~L}\right]}{[\mathrm{L}][\mathrm{H}]^{3}}=\beta_{\mathrm{H}_{3} \mathrm{~L}}=\frac{1}{K_{\mathrm{a}}^{\mathrm{HL}} \times K_{\mathrm{a}}^{\mathrm{H}_{2} \mathrm{~L}} \times K_{\mathrm{a}}^{\mathrm{H}_{3} \mathrm{~L}}} \tag{1}
\end{equation*}
$$

Such data had been determined only for one of the peptides, $\mathbf{1}^{\mathbf{L}}$, nevertheless, the same protonation/deprotonation constants were extrapolated for all other studied ligands. Consequently, the calculations detailed below can be considered as rather precise estimates for the complexes of $\mathbf{1}^{\mathbf{L}}$ but less reliable predictions for the other five peptides. The deduction leading to the final formulae are as follows:

The apparent stability of the mononuclear complexes at $\mathrm{pH}=2.0$ is defined as:

$$
\begin{equation*}
\beta_{\mathrm{HgP}}^{\mathrm{pH} 2.0}=\frac{[\mathrm{HgP}]}{[\mathrm{Hg}][\mathrm{P}]} \tag{2}
\end{equation*}
$$

Considering that the spectrophotometrically determined $\mathrm{p} K_{\mathrm{a}}$ values, attributed to the release of one equivalent proton from the Hg (II)-bound peptides, span the range of $4.3-5.1$, a plausible assumption is that the peptides are bound to $\mathrm{Hg}(\mathrm{II})$ as mono-protonated ligands (HL) at $\mathrm{pH}=$ 2.0 and the equilibrium concentration of the sum of complexed ligand forms, $[\mathrm{HgP}]$, can be approximated with the concentration of the HgHL complex, i.e. $[\mathrm{HgP}]=[\mathrm{HgHL}]$. Additionally, at $\mathrm{pH}=2.0$ the concentration of the free peptide, $[\mathrm{P}]$, can be substituted with that of the fully protonated ligand, $\left[\mathrm{H}_{3} \mathrm{~L}\right]$. Above equation is then transformed to:

$$
\begin{equation*}
\beta_{\mathrm{HgP}}^{\mathrm{pH} 2.0}=\frac{[\mathrm{HgHL}]}{[\mathrm{Hg}]\left[\mathrm{H}_{3} \mathrm{~L}\right]} \tag{3}
\end{equation*}
$$

[$\left.\mathrm{H}_{3} \mathrm{~L}\right]$ in the above equation can be substituted by

$$
\begin{equation*}
\left[\mathrm{H}_{3} \mathrm{~L}\right]=\beta_{\mathrm{H}_{3} \mathrm{~L}} \times[\mathrm{L}] \times[\mathrm{H}]^{3} \tag{4}
\end{equation*}
$$

and rearranged to

$$
\begin{equation*}
\beta_{\mathrm{HgP}}^{\mathrm{pH} 2.0} \times \beta_{\mathrm{H}_{3} \mathrm{~L}} \times[\mathrm{H}]^{2}=\frac{[\mathrm{HgHL}]}{[\mathrm{Hg}][\mathrm{L}][\mathrm{H}]} \tag{5}
\end{equation*}
$$

Latter equation can be easily combined with the expression of the formation constant of the HgHL complex (6).

$$
\begin{equation*}
\beta_{\mathrm{HgHL}}=\frac{[\mathrm{HgHL}]}{[\mathrm{Hg}][\mathrm{LL}][\mathrm{H}]} \tag{6}
\end{equation*}
$$

The combination of (5) and (6) leads to an expression allowing the calculation of β_{HgHL} from the experimentally measured stability data:

$$
\begin{gather*}
\beta_{\mathrm{HgHL}}=\beta_{\mathrm{HgP}}^{\mathrm{pH2} 2.0} \times \beta_{\mathrm{H}_{3} \mathrm{~L}} \times[\mathrm{H}]^{2} \tag{7}\\
\log \beta_{\mathrm{HgHL}}=\log \beta_{\mathrm{HgP}}^{\mathrm{pH} 2.0}+\log \beta_{\mathrm{H}_{3} \mathrm{~L}}-2 \times \mathrm{pH} \tag{8}
\end{gather*}
$$

Formation constants for the parent HgL complexes can be obtained by using the spectrophotometrically determined deprotonation constants ($\mathrm{p} \mathrm{K}_{\mathrm{a}}^{\mathrm{HgHL}}$) for the $\mathrm{HgHL} \rightleftharpoons \mathrm{HgL}+$ H process:

$$
\begin{equation*}
\log \beta_{\mathrm{HgL}}=\log \beta_{\mathrm{HgHL}}-\mathrm{p} K_{\mathrm{a}}^{\mathrm{HgHL}} \tag{9}
\end{equation*}
$$

From the above thermodynamic stability constants, apparent stabilities of the HgP monocomplexes may be re-calculated for any desired pH values allowing a direct comparison of the $\mathrm{Cu}(\mathrm{I})-$ and $\mathrm{Hg}(\mathrm{II})$-binding affinities of the studied peptides.

Table S2. Average energies ($\mathrm{kcal} / \mathrm{mol}$) of the peptides in their apo or $\mathrm{Hg}(\mathrm{II})$-bound forms measured during the last 40 ns (of 85 ns or more) MD simulations. Internal energy is sum of Bonds + Angles + Dihedrals + Impropers - (Standard deviations in parentheses). The energy differences (holo - apo) correlated to the stability constant β_{HgP} are also given.

Peptide	$\mathbf{P}^{\mathbf{3 C}}$	$\mathbf{1}^{\mathbf{C}}$	$\mathbf{2}^{\mathbf{C}}$	$\mathbf{3}^{\mathbf{C} \S}$	$\mathbf{1}^{\mathbf{L}}$	$\mathbf{2}^{\mathbf{L}}$
$E(\mathrm{HgP})$	-186.0	-184.8	-182.3	-202.3	-187.1	-181.3
	(7.0)	(6.9)	(6.7)	(7.0)	(7.1)	(7.1)
	-173.2	-173.4	-170.3	-191.3	-174.0	-171.8
	(7.2)	(7.5)	(7.0)	(7.1)	(6.9)	(7.2)
$\Delta E($ HgP-P $)$	-12.8	-11.4	-12.0	-11.0	-13.1	-9.5

${ }^{\S}$ The higher total energies calculated for the 3^{C} peptide is a consequence of the larger number of amino acids (11 against 10 for the other peptides).

$1^{\text {L }}$

$2^{\text {L }}$

Figure S5. Energy minimized structures of the 2 linear peptides in their Hg-bound form. (oriented with respect to the position of backbone atom coordinates of residues 1 to 10)

