Supplementary Information

Short oligopeptides with three cysteine residues as models of sulphur-rich Cu(I)- and Hg(II)-binding sites in proteins

Edit Mesterhazy,^{a,b} Colette Lebrun,^a Serge Crouzy,^c Attila Jancso,^b* Pascale Delangle^a*

^a INAC/SYMMES/Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
 ^b Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
 ^c BIG/LCBM/Université Grenoble Alpes, CEA, CNRS, (UMR 5249), 38000 Grenoble, France

Name	<i>t</i> _r (min)	Chemical formula	Molecular weight (g/mol)	m/z [M+2H] ²⁺	m/z [M+H] ⁺
P ^{3C}	10.1	$C_{34}H_{57}N_{13}O_{13}S_3$ 951.34		476.8	952.4
1 ^C	10.7	$C_{34}H_{57}N_{13}O_{13}S_3$	951.34	476.8	952.3
1 ^L	10.5	$C_{36}H_{62}N_{14}O_{14}S_3$	1010.37	506.3	1011.4
2 ^C	10.9	C ₃₄ H ₅₇ N ₁₃ O ₁₃ S ₃	951.34	476.7	952.3
2 ^L	10.4	C ₃₆ H ₆₂ N ₁₄ O ₁₄ S ₃	1010.37	506.7	1011.4
3 ^C	10.8	$C_{37}H_{62}N_{14}O_{14}S_3$	1022.37	512.3	1023.3

 Table S1. Analytical HPLC and (+)ESI-MS references of the peptides

Figure S1. Analytical HPLC chromatogram and (+)ESI-MS spectra of the studied peptides

Figure S2. CD titration of $\mathbf{1}^{C}$ with Cu(I) ($c_{peptide} = 30 \ \mu M$) in phosphate buffer 20 mM, pH = 7.4 + 10 V/V% AcN. The upper panel shows the spectra with 0.0-2.0 equivalents of Cu(I) and the lower with 2.0-3.0 equivalents.

Figure S3. (+) ESI-MS spectra recorded for $\mathbf{1}^{C}$ with Cu(I). $c_{\text{peptide}} = 100 \,\mu\text{M}$ in NH₄AcO buffer 20 mM, pH = 7.0 + 10 V/V% AcN. A) 0.9 Cu(I) equiv. B) 2.0 Cu(I) equiv. C) Experimental and calculated isotopic patterns of the main cluster species. The notation $\mathbf{1}^{C}$ refers here to the neutral free peptide.

Figure S4. Molar spectra of the Hg(II)- Γ complexes at pH = 2.0 obtained by SPECFIT.

Calculation of the formation constants of the HgHL and HgL complexes

Thermodynamic formation constants for the mono-protonated and parent Hg(II)-complexes were estimated from the apparent stabilities of the HgP mononuclear complexes determined at pH = 2.0. These calculations involve the stepwise proton dissociation constants (K_a^{HL} , $K_a^{H_2L}$, $K_a^{H_3L}$) of the ligands, expressed in a form of the overall formation (association) constant, β_{H_3L} , of the fully protonated peptides:

$$\frac{[H_{3}L]}{[L][H]^{3}} = \beta_{H_{3}L} = \frac{1}{K_{a}^{HL} \times K_{a}^{H_{2}L} \times K_{a}^{H_{3}L}}$$
(1)

Such data had been determined only for one of the peptides, 1^L, nevertheless, the same protonation/deprotonation constants were extrapolated for all other studied ligands. Consequently, the calculations detailed below can be considered as rather precise estimates for the complexes of 1^L but less reliable predictions for the other five peptides. The deduction leading to the final formulae are as follows:

The apparent stability of the mononuclear complexes at pH = 2.0 is defined as:

$$\beta_{\text{HgP}}^{\text{pH2.0}} = \frac{[\text{HgP}]}{[\text{Hg}][\text{P}]}$$
(2)

Considering that the spectrophotometrically determined pK_a values, attributed to the release of one equivalent proton from the Hg(II)-bound peptides, span the range of 4.3 - 5.1, a plausible assumption is that the peptides are bound to Hg(II) as mono-protonated ligands (HL) at pH = 2.0 and the equilibrium concentration of the sum of complexed ligand forms, [HgP], can be approximated with the concentration of the HgHL complex, i.e. [HgP] = [HgHL]. Additionally, at pH = 2.0 the concentration of the free peptide, [P], can be substituted with that of the fully protonated ligand, [H₃L]. Above equation is then transformed to:

$$\beta_{\rm HgP}^{\rm pH2.0} = \frac{[\rm HgHL]}{[\rm Hg][\rm H_3L]}$$
(3)

[H₃L] in the above equation can be substituted by

$$[\mathrm{H}_{3}\mathrm{L}] = \beta_{\mathrm{H}_{3}\mathrm{L}} \times [\mathrm{L}] \times [\mathrm{H}]^{3}$$
⁽⁴⁾

and rearranged to

$$\beta_{\text{HgP}}^{\text{pH2.0}} \times \beta_{\text{H}_{3}\text{L}} \times [\text{H}]^{2} = \frac{[\text{HgHL}]}{[\text{Hg}][\text{L}][\text{H}]}$$
(5)

Latter equation can be easily combined with the expression of the formation constant of the HgHL complex (6).

$$\beta_{\rm HgHL} = \frac{[\rm HgHL]}{[\rm Hg][L][\rm H]} \tag{6}$$

The combination of (5) and (6) leads to an expression allowing the calculation of β_{HgHL} from the experimentally measured stability data:

$$\beta_{\rm HgHL} = \beta_{\rm HgP}^{\rm pH2.0} \times \beta_{\rm H_3L} \times [\rm H]^2 \tag{7}$$

$$\log \beta_{\rm HgHL} = \log \beta_{\rm HgP}^{\rm pH2.0} + \log \beta_{\rm H_3L} - 2 \times \rm pH$$
(8)

Formation constants for the parent HgL complexes can be obtained by using the spectrophotometrically determined deprotonation constants (pK_a^{HgHL}) for the HgHL \rightleftharpoons HgL+ H process:

$$\log \beta_{\rm HgL} = \log \beta_{\rm HgHL} - p K_{\rm a}^{\rm HgHL}$$
(9)

From the above thermodynamic stability constants, apparent stabilities of the HgP monocomplexes may be re-calculated for any desired pH values allowing a direct comparison of the Cu(I)- and Hg(II)-binding affinities of the studied peptides.

Table S2. Average energies (kcal/mol) of the peptides in their apo or Hg(II)-bound forms measured during the last 40 ns (of 85 ns or more) MD simulations. Internal energy is sum of Bonds + Angles + Dihedrals + Impropers – (Standard deviations in parentheses). The energy differences (holo – apo) correlated to the stability constant β_{HgP} are also given.

Peptide	P ^{3C}	1 ^C	2 ^C	3 ^{C §}	1 ^L	2^{L}
<i>E</i> (HgP)	-186.0	-184.8	-182.3	-202.3	-187.1	-181.3
	(7.0)	(6.9)	(6.7)	(7.0)	(7.1)	(7.1)
$E(\mathbf{P})$	-173.2	-173.4	-170.3	-191.3	-174.0	-171.8
	(7.2)	(7.5)	(7.0)	(7.1)	(6.9)	(7.2)
$\Delta E(\text{HgP-P})$	-12.8	-11.4	-12.0	-11.0	-13.1	-9.5

[§]The higher total energies calculated for the 3^{C} peptide is a consequence of the larger number of amino acids (11 against 10 for the other peptides).

Figure S5. Energy minimized structures of the 2 linear peptides in their Hg-bound form. (oriented with respect to the position of backbone atom coordinates of residues 1 to 10)