Cyclometallated Au(III) dithiocarbamate complexes: synthesis, anticancer evaluation and mechanistic studies.

Morwen R. M. Williams,^a Benoît Bertrand,^{a,c*} David L. Hughes,^a Zoë A. E. Waller,^b Claudia Schmidt,^d Ingo Ott,^d Maria O'Connell,^b Mark Searcey,^{a,b*} Manfred Bochmann^{a*}

^a School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK

Emails: benoit.bertrand@upmc.fr, m.searcey@uea.ac.uk, m.bochmann@uea.ac.uk

^b School of Pharmacy, University of East Anglia, Norwich, NR4 7TJ, UK

^c Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France

^d Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, D-38106 Braunschweig, Germany

Supplementary Information

Contents	Page
Figure S1: UV/Vis spectrum of complex 3 (1 mM), GSH (1 mM) and a mixture of complex 3 and GSH (1mM), (DMSO-H ₂ O 1:1).	S2
Figure S2: UV/Vis spectrum of complex 4 (1 mM), GSH (1 mM) and a mixture of complex 4 and GSH (1mM), (DMSO-H ₂ O 1:1).	S2
Figure S3: UV/Vis spectrum of complex 5 (1 mM), GSH (1 mM) and a mixture of complex 5 and GSH (1mM), (DMSO-H ₂ O 1:1).	S 3
Figure S4: UV/Vis spectrum of complex 6 (1 mM), GSH (1 mM) and a mixture of complex 6 and GSH (1mM), (DMSO-H ₂ O 1:1).	S 3
Figure S5: UV/Vis spectrum of complex 7 (1 mM), GSH (1 mM) and a mixture of complex 7 and GSH (1mM), (DMSO-H ₂ O 1:1).	S 4
Figure S6 : ¹ H NMR spectra of a 1:1 mixture of 3 with NAC at different reaction times at room temperature, in comparison with the starting materials 3 and NAC (CD ₃ CN).	S4
Figure S7-S16: ¹ H and ¹³ C{ ¹ H} NMR spectrum	S5-S9

Figure S1: UV/Vis spectrum of complex **3** (1 mM), GSH (1 mM) and a mixture of complex **3** and GSH (1mM), (DMSO-H₂O 1:1).

Figure S2: UV/Vis spectrum of complex **4** (1 mM), GSH (1 mM) and a mixture of complex **4** and GSH (1mM), (DMSO-H₂O 1:1).

Figure S3: UV/Vis spectrum of complex **5** (1 mM), GSH (1 mM) and a mixture of complex **5** and GSH (1mM), (DMSO-H₂O 1:1).

Figure S4: UV/Vis spectrum of complex **6** (1 mM), GSH (1 mM) and a mixture of complex **6** and GSH (1mM), (DMSO-H₂O 1:1).

Figure S5: UV/Vis spectrum of complex 7 (1 mM), GSH (1 mM) and a mixture of complex 7 and GSH (1mM), (DMSO-H₂O 1:1).

Figure S6: ¹H NMR spectra of a 1:1 mixture of **3** with N-acetyl cysteine (NAC) at different reaction times at room temperature, in comparison with the starting materials **3** and NAC (CD_3CN).

Figure S7: ¹H NMR spectrum of 2 in $(CD_3)_2SO$ at 298 K.

Figure S8: C¹³{¹H} NMR spectrum of **2** in (CD₃)₂SO at 298 K.

Figure S9:¹H NMR spectrum of **3** in (CD₃)₂SO at 298 K.

Figure S10:C¹³{¹H} NMR spectrum of 3 in $(CD_3)_2SO$ at 298 K.

Figure S11:¹H NMR spectrum of 4 in CD₂Cl₂ at 298 K.

Figure S12:C¹³{ 1 H} NMR spectrum of 4 in CD₂Cl₂ at 298 K.

Figure S13:¹H NMR spectrum of 5 in CD₃CN at 298 K.

Figure S14:C¹³{¹H} NMR spectrum of 5 in CD₃CN at 298 K.

Figure S15:¹H NMR spectrum of 6 in (CD₃)₂SO at 298 K.

Figure S16:C¹³{¹H} NMR spectrum of 6 in $(CD_3)_2SO$ at 298 K.