Supporting Information-I

Cytoprotective effects of imidazole-based [S1] and [S2]-donor ligands against mercury toxicity: a bioinorganic approach

Ramesh Karri, Ashish Chalana, Ranajit Das, Rakesh Kumar Rai, Gouriprasanna Roy*

Department of Chemistry, School of Natural Sciences, Shiv Nadar University, NH91, Dadri, Gautam Buddha Nagar, UP 201314, India

Contents:

1. Synthetic Procedure of L3	S2
2. NMR Titrations	
(a) ¹ H NMR titration of L1and L2 with HgX ₂ (Figure S1- S6)	
(b) Variation of ¹ H NMR chemical shift by titration of L1 with HgI ₂ and L2 with HgX ₂	
(Figure S7)	S3-S7
(c) Variation of 13 C NMR chemical shift by titration of L1 with HgI ₂ & HgCl ₂	
(Figure S8)	
(d) ¹⁹⁹ Hg NMR titration of L1 and L2 with HgCl ₂ (Figure S9)	
3. Computational details (Table S1-S2)	S8-S10
4. UV-vis Spectroscopic Analysis	
(a) UV-vis spectra of L1 and L2 with HgX ₂ (Figure S10)	S11-S12
(b) UV-vis titration profile L1 and L2 with HgX_2 (Figure S11- S12)	
5. X-ray Crystallography Analysis	
(a) Crystallographic data for Compounds (Table S3-S4)	
(b) ORTEP diagram of k^{1} -(L2) ₂ Hg ₂ Cl ₄ . DMSO and Crystal packing interactions (Figure	S13-S16
S13- S16)	
6. ¹ H and ¹³ C NMR spectra (Figure S17-S27)	S17-S27
7. Cell culture studies	S28-S29
(a) Sample preparation for measurement of ligand internalization by HRMS	
(b) Determination of ROS by pretreatment of ligand (Figure S29- S30)	
8. References	S30

1. Synthetic Procedures:

Scheme 1.Synthetic route for L3. Reagents and conditions: (i) 4-bromobutyrate, 12 h, rt (ii) K₂CO₃, dry methanol, S powder, reflux 24 h (iii) 6 N aq. NaOH, acidify with Citric acid.

Synthesis of L3 [4,4'-(3,3'-methylenebis(2-thioxo-2,3-dihydro-1H-imidazole-3,1-diyl))dibutanoic acid]:

Step 1: A 250ml two-neck round bottom flask was charged with solution of N, Ndiimadazolylmethane (2g, 13.5 mmol) in acetonitrile (150 mL) and fitted with reflux condenser and septum. Ethyl-4-bromobutyrate (4.63 ml, 32.4 mmol) was slowly added and reaction mixture was heated to 96 °C for 48 h. Solvent was removed and crude was washed with ethylacetate to produce white semisolid diimadazolinium di-cationic salt. Which was dissolved in dry methanol (50 mL) then sulfur powder (1.04 g, 32.4 mmol) and anhydrous potassium carbonate (4.47g, 32.4 mmol) was added and the reaction mixture was reflux for 24 h. The solution was then filtered in hot condition through celite. Further reaction mixture was concentrate under reduced pressure and then extracted with ethylacetate and wash with brain and sodium sulphate. Reaction mixture chromatography packed with silica ethylacetate/hexane as mobile phase (0.30%).The desired **product A (L3-Ester**) was obtained as a white solid Yield: 3.83 g (69%).¹H NMR (400 MHz, CDCl₃) $\delta = 2.15 - 2.01$ (m, 4H), 2.36 (t, *J* = 7.1 Hz, 4H), 3.66 (s, 6H), 4.06 (t, *J* = 7.2 Hz, 4H), 6.31 (s, 2H), 6.64 (d, *J* = 2.0 Hz, 2H), 7.61 (d, *J* = 2.0 Hz, 2H). ^{13C} NMR (101 MHz, CDCl3) $\delta = 24.2$, 30.9, 47.2, 52.0, 58.1, 117.1,119.1, 163.8, 173.2. HR-ESIMS (m/z): calcd for [M+H]⁺ C₁₇H₂₄N₄O₄S₂: 413.1312, observed value: 413.1310.

Step 2: Product A (1.5 g, 3.63 mmol) was dissolved in methanol (50 mL) and 6 N aq. NaOH (0.6 mL, 3.63 mmol) was added. The mixture was stirred at room temperature for about 6 h. The solvent was removed by reducing pressure to obtain salt. Which was dissolved in 5 mL of water and acidify with citric acid saturated solution at 0 °C to obtain white solid was filtered and dry under high vacuum. The desired product L3 was obtained as a white solid. Yield: 1.18 g (85%).¹H NMR (DMSO-*d*₆) δ = 1.85 – 1.92 (m, 4H), 2.21 (t, *J* = 7.1 Hz, 4H), 3.96 (t, *J* = 7.2 Hz, 4H), 6.15 (s, 2H), 7.14 (d, *J* = 2.0 Hz, 2H), 11.82 (s, 2H), ¹³C NMR (DMSO-*d*₆) δ = 23.9, 30.7, 46.4, 55.9, 118.0,118.0, 162.5, 173.8. HR-ESIMS (m/z): calcd for [M+H]⁺ C₁₅H₂₀N₄O₄S₂: 385.0999, observed value: 385.1004.

2. NMR Titrations:

Figure S1. ¹H NMR titration spectra of HgI₂ (0.05 mM) with L1 from 1 to 11 equivalents in DMSO - d_6 at 21 °C (*, DMSO- d_6 ; #, H₂O in DMSO- d_6).

	1			[L1]/[Hg	Br ₂]		I [#]			
				11			U		*	
				10						
				9			. J.		J	
				8						
				7			. U.		L	
				6			. U.			
				5			u			
/				4			lı			
l				3						
				2						
l				1						
8.0 7.5	7.0 6.5	6.0	5.5	5.0 δ ppr	4.5 n	4.0	3.5	3.0	2.5	2.0

Figure S2. ¹H NMR titration spectra of HgBr₂ (0.05 mM) with L1 from 1 to 11 equivalents in DMSO - d_6 at 21 °C (*, DMSO- d_6 ; #, H₂O in DMSO- d_6).

Figure S3. ¹H NMR titration spectra of HgI₂ (0.05 mM) with L1 from 1 to 11 equivalents in DMSO - d_6 at 21 °C (*, DMSO- d_6 ; #, H₂O in DMSO- d_6).

Figure S4. ¹H NMR titration spectra of HgI₂ (0.05 mM) with L2 from 1 to 11 equivalents in DMSO - d_6 at 21 °C (*, DMSO- d_6 ; #, H₂O in DMSO- d_6).

Figure S5. ¹H NMR titration spectra of HgBr₂ (0.05 mM) with L2 from 1 to 11 equivalents in DMSO - d_6 at 21 °C (*, DMSO- d_6 ; #, H₂O in DMSO- d_6).

Figure S6. ¹H NMR titration spectra of HgCl₂ (0.05 mM) with L2 from 1 to 11 equivalents in DMSO - d_6 at 21 °C (*, DMSO- d_6 ; #, H₂O in DMSO- d_6).

Figure S7. (a) ¹H NMR chemical shift of H_a (–NCH₃) & H_b (olefinic) of L1 in presence of HgI₂ (b) Change in ¹H NMR chemical shift of N-CH₂-N of L2 (0 to 11 equiv.) with HgX₂ (X =Cl, Br, I).

Figure S8. ¹³C NMR chemical shift variations of L1 (1 to 4 equiv.) in the presence of (a) HgI₂ (1 equiv.) (b) HgCl₂ (1 equiv.) in DMSO - d_6 at 21 °C.

Figure S9. ¹⁹⁹Hg NMR stack spectra of HgCl₂ (0.1M) and, HgCl₂ with L1 and L2 ligand in the ratio of (1:1) & (1:2) in DMSO- d_6 at 21 °C.

3. Computational details: Geometry optimizations and frequency calculations were carried out using m062x level of theory as implemented in the Gaussians 09 package.¹ The 6-31G(d) basis set was used for all atoms (except Hg and I) whereas Stuttgart-Dresden basis set (SDD) was used for Hg and I atom with respective relativistic effective core potential.

Compds	C-S bond length	C-N bond length
	(Å)	(Å)
L2	1.6797	1.3564,1.3678
k^{1} -(L2) ₂ Hg ₂ Cl ₄	1.7193	1.3466,1.3555
k^2 -L2HgCl ₂	1.7005	1.3511,1.3664

Table S1. The C–S and C–N bond lengths of L2, k^1 -(L2)₂Hg₂Cl₄ and k^2 -L2HgCl₂

Table S2. Optimized geometries structures and co-ordinates.

	16	2.539139000	1.780398000	-0.540089000
	6	2.163924000	0.183611000	-0.178127000
	6	1.121076000	-1.821300000	-0.049292000
	1	0.325623000	-2.526629000	-0.220439000
	6	2.261791000	-1.904499000	0.660025000
	1	2.681079000	-2.721613000	1.219345000
	6	4.157955000	-0.313373000	1.186643000
	1	4.885873000	-0.063048000	0.415455000
2 1 9 79	1	4.509762000	-1.158100000	1.774622000
	1	4.018353000	0.558380000	1.824943000
	6	-0.000020000	0.000200000	-1.374794000
	1	0.416321000	0.797564000	-1.987569000
	7	1.070788000	-0.538210000	-0.571662000
	7	2.895613000	-0.675140000	0.574992000
L2	16	-2.538570000	-1.780538000	-0.539841000
	6	-2.163892000	-0.183565000	-0.178145000
	6	-1.121533000	1.821612000	-0.049457000
	1	-0.326258000	2.527124000	-0.220659000
	6	-2.262277000	1.904582000	0.659843000
	1	-2.681764000	2.721633000	1.219106000
	6	-4.157973000	0.312975000	1.186714000
	1	-4.885850000	0.062337000	0.415589000
	1	-4.510002000	1.157674000	1.774600000
	1	-4.018089000	-0.558656000	1.825119000
	1	-0.416333000	-0.797170000	-1.987576000
	7	-1.070935000	0.538492000	-0.571729000
	7	-2.895770000	0.675042000	0.574952000

	00	1 400706000	0.000005000	0.151667000
	80	-1.423/26000	0.000005000	-0.15166/000
	16	-0.274555000	-1.938727000	1.523008000
	7	1.472162000	-2.877825000	-0.341266000
	7	2.281575000	-1.201759000	0.763272000
	6	1.174383000	-1.992051000	0.634550000
	6	0.508120000	-3.819874000	-0.886855000
	1	1.039408000	-4.515424000	-1.536700000
Ť	1	-0.244554000	-3.270622000	-1.459592000
	1	0.023616000	-4.355188000	-0.070201000
	6	3.251406000	-1.605899000	-0.140344000
	1	4.219540000	-1.137119000	-0.198527000
20 00	6	2.739866000	-2.646170000	-0.832015000
	1	3.161833000	-3.245162000	-1.622759000
	16	-0.274539000	1.938730000	1.523006000
	7	1.472187000	2.877816000	-0.341265000
	7	2.281586000	1.201743000	0.763272000
	6	1.174400000	1.992043000	0.634549000
	6	0.508154000	3.819873000	-0.886855000
k^2 -I 2HgCl	1	1.039448000	4.515418000	-1.536700000
n L2HgCl2	1	-0.244525000	3.270627000	-1.459592000
	1	0.023655000	4.355192000	-0.070201000
	6	3.251420000	1.605875000	-0.140343000
	1	4.219551000	1.137088000	-0.198524000
	6	2.739890000	2.646149000	-0.832015000
	1	3.161862000	3.245138000	-1.622758000
	17	-3.826885000	0.000014000	-0.058342000
	17	0.454333000	-0.000004000	-1.816022000
	6	2.358973000	-0.000009000	1.573515000
	1	3.308499000	-0.000013000	2.114187000
	1	1.516399000	-0.000005000	2.269460000

80	3.761880000	0.000848000	0.380606000
17	6.168845000	0.001115000	-0.159732000
16	2.817029000	2.248248000	1.533165000
17	2.177381000	0.000591000	-1.665945000
7	1.075386000	2.779123000	-0.539429000
7	3.094906000	3.445304000	-0.920889000
6	2.317782000	2.842296000	-0.001118000
6	-0.000546000	1.974154000	-0.000023000
1	-0.405028000	1.348644000	-0.796430000
6	2.346527000	3.744079000	-2.043875000
1	2.786971000	4.218649000	-2.905626000
6	4.535861000	3.622814000	-0.779431000
1	4.749541000	4.080138000	0.187092000
1	4.877842000	4.269814000	-1.587033000
1	5.039725000	2.652393000	-0.838845000

	6	1.082206000	3.323773000	-1.808522000
	1	0.191786000	3.336425000	-2.418665000
	16	-2.818011000	2.246947000	-1.533607000
	7	-1.076792000	2.778919000	0.539050000
	7	-3.096543000	3.444644000	0.920075000
	6	-2.319155000	2.841522000	0.000598000
	1	0.404173000	1.349127000	0.796641000
	6	-2.348381000	3.743951000	2.043064000
	1	-2.789052000	4.218686000	2.904608000
	6	-4.537515000	3.621829000	0.778360000
a and p	1	-4.751148000	4.078754000	-0.188363000
	1	-4.879718000	4.269078000	1.585670000
	1	-5.041218000	2.651346000	0.838074000
	6	-1.083914000	3.323938000	1.807983000
— (1	-0.193566000	3.337034000	2.418221000
	80	-3.762135000	-0.000737000	-0.380835000
	17	-6.169154000	-0.001128000	0.159258000
	17	-2.177826000	-0.000259000	1.665865000
	16	-2.817067000	-2.248065000	-1.533435000
55	7	-1.075609000	-2.779294000	0.539193000
k^{l} -(L2) ₂ Hg ₂ Cl ₄	7	-3.095195000	-3.445349000	0.920492000
	6	-2.317976000	-2.842318000	0.000819000
	6	0.000365000	-1.974307000	-0.000090000
	1	0.404802000	-1.348849000	0.796380000
	6	-2.346883000	-3.744329000	2.043470000
	1	-2.787402000	-4.218961000	2.905148000
	6	-4.536162000	-3.622691000	0.778964000
	1	-4.749856000	-4.079844000	-0.187636000
	1	-4.878236000	-4.269780000	1.586457000
	1	-5.039923000	-2.652224000	0.838508000
	6	-1.082525000	-3.324067000	1.808231000
	1	-0.192137000	-3.336833000	2.418419000
	16	2.817775000	-2.246787000	1.533496000
	7	1.076652000	-2.779023000	-0.539148000
	7	3.096496000	-3.44442000	-0.920180000
	6	2.319004000	-2.841502000	-0.000677000
	1	-0.404311000	-1.349223000	-0.796732000
	6	2.348365000	-3.743913000	-2.043146000
	1	2.789107000	-4.218568000	-2.904697000
	6	4.537512000	-3.621283000	-0.778505000
	1	4.751275000	-4.078212000	0.188187000
	1	4.879862000	-4.268395000	-1.585863000
	1	5.040962000	-2.650664000	-0.838166000
	6	1.083844000	-3.324051000	-1.808075000
	1	0.193505000	-3.337235000	-2.418328000

4. UV-vis spectroscopic analysis:

Figure S10. UV-vis spectra of 5 x 10^{-5} M solutions of (a) L1 with HgX₂, (b) L2 with HgX₂ in acetonitrile (where X = Cl, Br, I).

Figure S11. (a) & (c) UV-vis titration profile of L1 (5 x 10^{-5} M) with 0.1 to 2 equiv. of HgBr₂ and HgCl₂, (b) & (d) Job's plot of the L1 with HgBr₂ and HgCl₂ in acetonitrile at 301nm, 290 nm respectively.

Figure S12. (a) & (c) UV-vis titration profile of L2 (5 x 10^{-5} M) with 0.1 to 2 equiv. of HgBr₂ and HgI₂, (b) & (d) Job's plot of the L2 with HgBr₂ and HgI₂ in acetonitrile at 301nm, 290 nm respectively, (e) The titration curves of the L2 with HgCl₂.

5. X-ray Crystallography Analysis:

	$(L1)_2HgBr_2$	$(L1HgI_2)_2$	$(L1)_3Hg_2I_4$
CCDC no.	1486402	1857557	1857558
Lattice	Monoclinic	Monoclinic	Monoclinic
Formula	C10 H16 Br2 Hg N4 S2	C10 H16 Hg2 I4 N4 S2	C15 H24 Hg2 I4 N6 S3
Formula Weight	616.78	1165.17	1293.36
Space Group	P21/n	C2/m	<i>P21/c</i>
a/A°	9.6186(7)	10.1454(3)	18.3607(7)
b/A°	14.2021(11)	15.0815(3)	14.7466(6)
c/ A°	13.5419(11)	15.0815(3)	11.7959(4)
lpha/ °	90	90	90
β/ °	108.982(3)	90	107.761(1)
$\gamma/$ °	90	90	90
$V/A^{\circ 3}$	1749.3(2)	2340.94(10)	3041.6(2)
Z	4	4	4
Temperature (K)	252 K	296 K	273 K
Radiation (λ)/A°	0.71073	0.71073	0.71073
$\rho/(g \text{ cm}^{-3})$	2.342	3.306	2.824
μ (Mo K _a) mm ⁻¹	13.598	18.554	14.364
θ_{max}/deg	26.415	25.676	25.681
No. of data collected	3582	2219	35205
No. of data	3083	1990	5765
No. of parameters	177	103	272
$R_1 [I > 2\sigma I]$	0.0262	0.0212	0.0322
$wR_2 [I > 2\sigma I]$	0.0590	0.0445	0.0544
R ₁ [all data]	0.0348	0.0262	0.0567
wR ₂ [all data]	0.0622	0.0467	0.0657
R _{int} [all data]	0.0779	0.0320	0.0516
GOF	1.030	1.061	1.063

Table S3. Crystallographic data for [(L1)₂HgBr₂], [(L1HgI₂)₂] and [(L1)₃Hg₂I₄].

	L3	k^{l} -(L2) ₂ Hg ₂ Cl ₄ .	k^{l} -(L2) ₂ Hg ₂ Br ₄	k^{l} -[L2Hg ₂ I ₄] _n
		DMSO		
CCDC no.	1857559	1534013	1857556	1857560
Lattice	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Formula	C15 H20 N4 O4	$C_{22}H_{36}Cl_4Hg_2N_8O_2$	C18 H24 Br4 Hg2 N8	C9 H12 Hg2 I4
	S 2	S_6	S 4	N4 S2
Formula	384.47	1179.93	1201.47	1149.13
Weight				
Space Group	C 2/c	C 2/m	<i>C2/m</i>	C 2/c
a/A°	7.2921(6)	17.9245(16)	17.7977(16)	38.111(3)
b/A°	7.8235(6)	12.3888(16)	12.2950(11)	7.4534(5)
c/ A°	30.636(2)	10.6773(10)	10.8212(10)	16.3979(13)
α / °	90	90	90	90
β/ °	93.610(3)	126.485(5)	125.868(2)	113.273(2)
γ/ °	90	90	90	90
$V/A^{\circ 3}$	1744.3(2)	1906.3(4)	1918.9(3)	4278.9(6)
Ζ	4	2	2	8
Temperature	298	298	298K	297 K
(K)				
Radiation	0.71073	0.71073	0.71073	0.71073
$(\lambda)/A^{\circ}$				
$\rho/(g \text{ cm}^{-3})$	1.464	2.056	2.079	3.568
μ (Μο Κα)	0.334	8.687	12.393	20.299
mm^{-1}				
θ_{max}/deg	26.372	26.362	26.367	26.022
No. of data	13043	36936	15576	38595
collected				
No. of data	1795	1993	1545	3245
No. of	115	119	88	203
parameters				
$R_1 [I > 2\sigma I]$	0.0419	0.0275	0.0354	0.0383
$wR_2 [I > 2\sigma I]$	0.0878	0.0722	0.0938	0.0738
R ₁ [all data]	0.0563	0.0290	0.0573	0.0576
wR ₂ [all data]	0.0957	0.0729	0.1099	0.0798
R _{int} [all data]	0.0375	0.0476	0.0682	0.055
GOF	1.093	1.336	0.757	1.028

Table S4. Crystallographic data for L3, (L2)₂Hg₂Cl₄.DMSO, (L2)₂Hg₂Br₄, [L2Hg₂I₄]_n.

Figure S13. The crystal packing of $(L1)_2Hg_2I_4$ (drawn in Mercury 3.8 software) showing shows that intermolecular hydrogen bonding between the H atom of $-NCH_3$ hydrogen with bridged iodine atom $(d_{(H \cdots I2)}: 3.137 \text{ Å})$.

Figure S14. The crystal packing of $(L1)_3Hg_2I_4$ (drawn in Mercury 3.8 software) showing a chain like structure with intermolecular S2…I1 interactions ($d_{(H \cdot \cdot \cdot I2)}$: 3.736 Å).

Figure S15. (a) ORTEP images of k^{1} -(L2)₂Hg₂Cl₄ with solvent molecule DMSO. (b) Molecular structure of k^{1} -(L2)₂Hg₂Cl₄ showing the orientation of Cl atoms in the molecule.

Figure S16. The crystal packing of k^{l} -(L2)₂Hg₂Br₄ metallacycle (drawn in Mercury 3.8 software) showing (a) Intermolecular hydrogen bonding interactions between two bromine atoms (Br2 & Br4) and the H atom of –NMe, and olefinic H atom [or imidazole -CH] of two different metallacycles with distance $d_{(H-Br2)} = d_{(H-Br4)} = 2.994$ Å & $d_{(H-Br2)} = d_{(H-Br4)} = 3.014$ Å. (b) The other two bromine atoms (Br1 & Br3) showing intermolecular S…Br1 interactions ($d_{(S-Br2)} = d_{(S-Br3)} = 3.615$ Å).

6. ¹H and ¹³C NMR spectra

Figure S17. ¹H and ¹³C NMR spectra of (L1)₂Hg₂I₄ in DMSO-*d*₆.

Figure S18. ¹H and ¹³C NMR spectra of (L1)₃Hg₂I₄ in DMSO-*d*₆.

Figure S19. ¹H and ¹³C NMR spectra of (L1)₂HgBr₂ in DMSO-*d*₆.

Figure S20. ¹H and ¹³C NMR spectra of k^{1} -(L2)₂Hg₂Cl₄ in DMSO- d_6 .

Figure S21. ¹H and ¹³C NMR spectra of k^{1} -(L2)₂Hg₂Br₄ in DMSO- d_{6} .

Figure S22. ¹H and ¹³C NMR spectra of the solution containing L2 and HgI₂ in 1:1 molar ratio in DMSO-*d*₆.

Figure S23. ¹H and ¹³C NMR spectra of Product-A (L3-Ester) in DMSO-*d*₆.

Figure S24. ¹H and ¹³C NMR spectra of L3 in DMSO-*d*₆.

Figure S25. ¹H and ¹³C NMR spectra of the solution containing L3 and HgCl₂ in 1:1 molar ratio in DMSO- d_6 .

Figure S26. ¹H and ¹³C NMR spectra of the solution containing L3 and HgBr₂ in 1:1 molar ratio in DMSO- d_6 .

Figure S27. ¹H and ¹³C NMR spectra of the solution containing L3 and HgI₂ in 1:1 molar ratio in DMSO- d_6 .

7. Cell culture studies: For all the cell culture experiments, cells were grown in humidified 5% CO_2 incubator at 37 °C. All three ligands (L1, L2 and L3) were dissolved in incomplete media with 0.02% DMSO (to avoid any precipitation) to obtain final stock solution concentration of 100 μ M. The 100 μ M stock solution of HgCl₂ was also prepared in incomplete media. The cytotoxic profile of HgCl₂ on HepG2 cells are shown below, Figure S28.

Figure S28. Percentage cell viability of HepG2 cells treated with HgCl₂ in various concentrations (5 -50μ M) 24 h by using MTT assay.

(a) Sample preparation for measurement of ligand internalization by HRMS: Cells $(1x10^5)$ were grown by using T-75 flask in complete media and incubated under humidified 5% CO₂ incubator at 37 °C until the confluence reaches 80%. Then cells were treated with L3 ligand at a final concentration of 100 μ M and incubated for 4 h in 5% CO₂ incubator at 37 °C. After incubation, the cells were washed thoroughly with cold PBS buffer solution (5 x 5 ml) followed by tripsinize and collect the cells by centrifugation to avoid the losing cells in washing process. The cells were resuspended in PBS then lysed by probe sonication and supernatant was collected. The supernatant was analysed by using Agilent HRMS-QTOF (U.S.A) coupled to a UFLC system.

(b) Determination of ROS by pretreatment of ligand: The intracellular protective effect of L3 against HgCl₂ induced toxicity was estimated by measurement of ROS production by using DCFH-DA assay. In details, the cells 1x 10^6 were seeded into three 6-well plate and incubated with 100 μ M of L3 for 4 h, 12 h and 24 h under 5% CO₂ at 37 °C.

Figure S29. Bright field (TOP) and the corresponding fluorescence images (bottom) of untreated (a), $20 \ \mu M \ HgCl_2$ (b), $20 \ \mu M \ HgCl_2 + 100 \ \mu M \ L3$ (24 h pretreatment of L3).

After incubation, the media was removed and then cells were further treated with 20 μ M of HgCl₂, dissolved in complete media, in fresh media and incubated for 4h. After 4h, the cells were treated with 5 μ M of DFCH-DA and incubated for another 30 min in 5% CO₂ incubator at 37 °C. Then the cells were washed with PBS and proceed for determination of ROS levels under Nikon fluorescence microscopy at excitation wavelength at 488 nm and emission wavelength at 525 nm (Figure S28) and measured the mean intensity profile of L3 with various incubation time intervals as shown in Figure S29.

Figure S30. The relative mean intensity profile of ROS production in HepG2 cells treated with HgCl₂ and pre-treated with L3 for 4 h, 12 h, and 24 h followed by treatment of HgCl₂ for 2 h.

8. References:

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Hratchian, X. Li, H. P.; Izmaylov, A. F. Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A; Peralta, Jr., J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.