## Supplementary Information

## For

The affinity of MhuD for heme is consistent with a heme degrading function
in vivo.
Biswash Thakuri, Amanda B. Graves, Alex Chao, Sommer L. Johansen, Celia W. Goulding, and Matthew D. Liptak

## Table of Contents

## Supplemental Experimental

S3-S13

Figure S1 Fluorescence-detected titration of heme into MhuD S14

Figure S2
Abs-detected titration of heme into MhuD
S14

Table S1 Soret band wavelength upon addition of heme to MhuD S15

Table S2 Soret band wavelength upon addition of heme to $\mathrm{MhuD}_{\mathrm{CH}} \quad \mathbf{S 1 5}$

Figure S3 MhuD fractionation as a function of heme concentration S16

Figure S4 FPLC chromatograph for MhuD purification $\quad \mathbf{S 1 6}$
$\begin{array}{lll}\text { Figure S5 SDS-PAGE of MhuD } & \text { S17 }\end{array}$
$\begin{array}{lll}\text { Figure S6 Purity of MhuD by SDS-PAGE } & \mathbf{S 1 7}\end{array}$

Table S3 MhuD $_{\text {CH }}$ gene sequence $\quad$ S18

Figure S7 FPLC chromatograph for $\mathrm{Mhu}_{\mathrm{CH}}$ purification $\quad \mathbf{S 1 9}$
$\begin{array}{lll}\text { Figure S8 SDS-PAGE of } \mathrm{MhuD}_{\mathrm{CH}} & \mathbf{S 1 9}\end{array}$
$\begin{array}{lll}\text { Figure } \mathbf{S 9} & \text { FPLC chromatograph for cleaved } \text { MhuD }_{\text {CH }} \text { purification } & \mathbf{S 2 0}\end{array}$
$\begin{array}{lll}\text { Figure S10 } & \text { SDS-PAGE for cleaved MhuD } & \text { CH }\end{array} \quad \mathbf{S 2 0}$

Figure S11 Purity of $\mathrm{MhuD}_{\mathrm{CH}}$ by SDS-PAGE $\mathbf{S 2 1}$

Figure S12 ESI-MS of cleaved MhuD ${ }_{\text {CH }} \quad$ S21

References S22

## Supplemental Experimental

All materials were purchased from Fisher Scientific and used without further purification unless otherwise noted. All water was obtained from a Synergy water purification system (Millipore).

Cloning, Expression, and Purification. The cloning and expression of MhuD (Rv3592) with a C-terminal $\mathrm{His}_{6}$ tag into pET-22b (Amp ${ }^{r}$, Novagen) has been previously described. ${ }^{1}$ The MhuD gene was recloned into a pET30a vector to encode a protein with an enterokinase cleavable N terminal $\mathrm{His}_{6}$ tag, which results in encoded full-length MhuD with an additional N-terminal Ala $\left(\mathrm{MhuD}_{\mathrm{CH}}\right)$. The M. tuberculosis MhuD gene (Rv3592) was PCR amplified from the pET 22 a plasmid noted above using KOD-Hot Start DNA Polymerase (Novagen) with primers ( $5^{\prime}$ - GGC CAT GGC CCC AGT GGT GAA GAT CAA CGC AAT CGA GGT GCC CGC C - $3^{\prime}$ ) and ( $5^{\prime}$ GGA AGC TTA TTA TGC AGT CTT GCC GGT CCC ACC GAC GTC AAG CAC GAC - 3’) containing the restriction sites $N c o I$ and HindIII, respectively. The PCR product was gel purified (Qiagen) and ligated into a linearized blunt vector, pCR-BluntII-TOPO (Invitrogen), and transformed into One-Shot TOP10 Escherichia coli cells (Invitrogen). Restriction enzymes NcoI and HindIII were used to excise the MhuD insert from pCR-BluntII-TOPO as well as cut the empty pET30a ( $\mathrm{Kan}^{r}$ ) vector. The excised MhuD insert and cut pET30a were ligated together using T4 DNA ligase (New England Biolabs). The resulting DNA construct was verified by DNA sequencing (Retrogen).

Cells containing recombinant MhuD were lysed as described previously, ${ }^{2}$ and the filtered supernatant was loaded onto a $5 \mathrm{~mL} \mathrm{Ni}(\mathrm{II})$-charged HiTrap chelating HP column (GE Healthcare) equilibrated with 50 mM Tris $\mathrm{pH} 7.8,350 \mathrm{mM} \mathrm{NaCl}$ using an ÄKTA pure 25 L fast protein liquid chromatography (FPLC) system (GE Healthcare). The column was washed with a $2 \mathrm{mM} / \mathrm{mL}$ linear gradient from 0 to 100 mM imidazole in 50 mM Tris $\mathrm{pH} 7.8,350 \mathrm{mM} \mathrm{NaCl}$ at a flow rate of 5.0
$\mathrm{mL} / \mathrm{min}$. Pure MhuD eluted during a subsequent $1.6 \mathrm{mM} / \mathrm{mL}$ linear gradient from 100 to 300 mM imidazole in 50 mM Tris $\mathrm{pH} 7.8,350 \mathrm{mM} \mathrm{NaCl}$ at a flow rate of $5.0 \mathrm{~mL} / \mathrm{min}$ (Figures S4-S5). FPLC fractions containing pure MhuD were pooled and the sample volume was reduced to 10 mL using Amicon stirred cells with 10 kDa ultrafiltration membranes (Millipore). Following overnight dialysis against 20 mM Tris $\mathrm{pH} 8.0,50 \mathrm{mM} \mathrm{NaCl},>99 \%$ pure MhuD was obtained as assessed by SDS-PAGE gel electrophoresis (Figure S6).

For recombinant expression of $\mathrm{MhuD}_{\mathrm{CH}}$, the $\mathrm{pET30a}\left(\mathrm{Kan}^{r}\right.$ ) vector encoding $\mathrm{MhuD}_{\mathrm{CH}}$ was transformed into BL21-GOLD (DE3) cells (Stratagene). DNA sequencing at the Vermont Cancer Center DNA Analysis Facility confirmed the sequence of the $\mathrm{MhuD}_{\mathrm{CH}}$ gene for all cell lines used at the University of Vermont (Table S3). E. coli cells containing pET30a were grown in LuriaBertani medium containing $30 \mu \mathrm{~g} / \mu \mathrm{L}$ kanamycin at $37^{\circ} \mathrm{C}$ using a MaxQ 5000 floor-model shaker (Thermo Scientific), and $\mathrm{MhuD}_{\mathrm{CH}}$ over-expression was induced with 1 mM isopropyl $\beta$-D-1thiogalactopyranoside at an $\mathrm{OD}_{600}$ of 0.8 a.u. Cells were lysed in 50 mM Tris $\mathrm{pH} 7.8,350 \mathrm{mM}$ NaCl by sonication following the addition of 2.5 mg lysozyme and 0.01 M phenylmethane sulfonyl fluoride using a Branson S-450A Sonifier. The lysate was centrifuged at $15,000 \times g$ for 45 mins using a Sorvall Legend XTR centrifuge (Thermo Scientific) and the supernatant was filtered through a $0.45 \mu \mathrm{~m}$ membrane (Millipore). The filtered lysate was loaded onto a $5 \mathrm{~mL} \mathrm{Ni}(\mathrm{II})$ charged HiTrap chelating HP column equilibrated with 50 mM Tris $\mathrm{pH} 7.8,350 \mathrm{mM} \mathrm{NaCl}$ using an ÄKTA pure 25 L FPLC system. The column was washed with a $2.25 \mathrm{mM} / \mathrm{mL}$ linear gradient from 0 to 90 mM imidazole in 50 mM Tris $\mathrm{pH} 7.8,350 \mathrm{mM} \mathrm{NaCl}$ at a flow rate of $5.0 \mathrm{~mL} / \mathrm{min}$. Pure, uncleaved $\mathrm{MhuD}_{\mathrm{CH}}$ eluted during a subsequent $1.48 \mathrm{mM} / \mathrm{mL}$ linear gradient from 90 to 275 mM imidazole in 50 mM Tris $\mathrm{pH} 7.8,350 \mathrm{mM} \mathrm{NaCl}$ at a flow rate of $5.0 \mathrm{~mL} / \mathrm{min}$ (Figures S7S8). FPLC fractions containing pure, uncleaved $\mathrm{MhuD}_{\mathrm{CH}}$ were pooled and the sample volume was
reduced to 10 mL using Amicon stirred cells with 10 kDa ultrafiltration membranes. Uncleaved $\mathrm{MhuD}_{\mathrm{CH}}$ was dialyzed overnight against 20 mM Tris $\mathrm{pH} 8.0,50 \mathrm{mM} \mathrm{NaCl}, 2 \mathrm{mM} \mathrm{CaCl}{ }_{2}$.

The $\mathrm{His}_{6}$ tag of $\mathrm{MhuD}_{\mathrm{CH}}$ was removed by adding enterokinase (New England Biolabs) in a molar ratio of $1: 250,000$. The mixture was stirred for 36 h at $4^{\circ} \mathrm{C}$, then loaded onto a 5 mL HiTrap Q HP column (GE Healthcare) equilibrated with 20 mM Tris $\mathrm{pH} 8.0,10 \mathrm{mM} \mathrm{NaCl}$ using an ÄKTA pure 25 L FPLC system. Pure, cleaved $\mathrm{MhuD}_{\mathrm{CH}}$ eluted during a $1.0 \mathrm{mM} / \mathrm{mL}$ linear gradient from 50 to 250 mM NaCl in 20 mM Tris pH 8.0 at a flow rate of $5.0 \mathrm{~mL} / \mathrm{min}$ (Figures S9-S10). FPLC fractions containing pure, cleaved $\mathrm{MhuD}_{\mathrm{CH}}$ were pooled and the sample volume was reduced to 2.5 mL using Amicon stirred cells with 10 kDa ultrafiltration membranes. Following exchange into 50 mM Tris $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}$ using a PD-10 desalting column (GE Healthcare), $>95 \%$ pure, cleaved $\mathrm{MhuD}_{\mathrm{CH}}$ was obtained as assessed by SDS-PAGE gel electrophoresis (Figure S 11 ).

Electrospray ionization mass spectrometry (ESI-MS) was used to assess the $\mathrm{MhuD}_{\mathrm{CH}}$ product. A $30 \mu \mathrm{M}$ sample of cleaved $\mathrm{MhuD}_{\mathrm{CH}}$ in 50 mM Tris $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}$ was loaded onto a $\mathrm{C}_{18}$ guard column equilibrated with $2 \%$ acetonitrile with $0.1 \%$ formic acid $(v / v)$ in water $(v / v)$ using a QTRAP 4000 LCMS/MS system (Sciex) with an M/z from 600-2000. The column was washed using $2 \%$ acetonitrile with $0.1 \%$ formic acid $(v / v)$ in water $(v / v)$ for 1 min at a flow rate of 100 $\mu \mathrm{L} / \mathrm{min}$. MhuD $\mathrm{CH}_{\mathrm{CH}}$ eluted during a $13.7 \% /$ min linear gradient from 2 to $98 \%$ acetonitrile with $0.1 \%$ formic acid $(v / v)$ in water $(v / v)$ at a flow rate of $100 \mu \mathrm{~L} / \mathrm{min}$. The spectrum was deconvoluted using BioAnalyst 1.5 software. The observed molecular weight of 11,327 Da was in perfect agreement with the expected molecular weight of $11,327 \mathrm{Da}$ (Figure S12).

Spectroscopic characterization. The MhuD-heme extinction coefficient was determined previously, ${ }^{2}$ and the extinction coefficients for MhuD-diheme, heme-bound $\mathrm{MhuD}_{\mathrm{CH}}\left(\mathrm{MhuD}_{\mathrm{CH}^{-}}\right.$ heme), and diheme-bound $\mathrm{MhuD}_{\mathrm{CH}}\left(\mathrm{MhuD}_{\mathrm{CH}}\right.$-diheme) were determined using a similar
procedure. Samples of MhuD-diheme, $\mathrm{MhuD}_{\mathrm{CH}^{-}}$-heme, and $\mathrm{MhuD}_{\mathrm{CH}^{-}}$-diheme were prepared in 50 mM Tris $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}$ as described previously, ${ }^{1}$ and their room temperature UV/Vis absorption (Abs) spectra were acquired from 900 to 200 nm with a scan rate of $600 \mathrm{~nm} / \mathrm{min}$, a 1.0 nm data interval, and a 0.1 s integration time using a Cary 100 Bio UV/Vis Spectrophotometer. The following extinction coefficients were determined using the pyridine hemochrome assay: ${ }^{3}$ MhuD-diheme $\left(\varepsilon_{410}=165.3 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$, MhuD $\mathrm{CH}^{-}$-heme $\left(\varepsilon_{407}=87.9 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$, and $\mathrm{MhuD}_{\mathrm{CH}^{-}}$ diheme $\left(\varepsilon_{395}=162.3 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right)$.

Fluorescence-detected heme titrations into MhuD and $\mathrm{MhuD}_{\mathrm{CH}}$ were completed by slightly modifying a previously described procedure. ${ }^{4}$ Briefly, 100 nM samples of MhuD and $\mathrm{MhuD}_{\mathrm{CH}}$, plus $17.5 \mu \mathrm{M}$ heme solutions, were prepared in 50 mM Tris $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}$ as previously described. ${ }^{2}$ Heme was titrated into MhuD and $\mathrm{MhuD}_{\mathrm{CH}}$ in 16 nM increments, and allowed to equilibrate for 5 min prior to fluorescence characterization. Fluorescence emission spectra were acquired for 285 nm excitation using a Photon Technology International QuantaMaster 4 spectrofluorometer equipped with a Xenon arc lamp connected to an LPS-220b power supply, an ASOC-10 electronics interface, an MD-4000 motor driver control, and a model 814 photomultiplier detection system. Emission spectra were acquired in the 410 to 310 nm range with a step size of 1 nm , an integration time of 1 s , and slit widths of 3 nm .

Abs-detected titrations were carried out using similar protein samples. $5 \mu \mathrm{M}$ samples of MhuD and $\mathrm{MhuD}_{\mathrm{CH}}$, and a $500 \mu \mathrm{M}$ heme solution, were prepared in 50 mM Tris $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}$ as described before. ${ }^{2}$ Heme was titrated into MhuD and $\mathrm{MhuD}_{\mathrm{CH}}$ in $1 \mu \mathrm{M}$ increments, and allowed to equilibrate until no further spectral changes were observed. Abs spectra were acquired using the equipment and parameters described above.

Spectral Analysis. The fluorescence-detected titrations of heme into MhuD and MhuD ${ }_{C H}$ were analyzed in order to determine $K_{d 1}$ for MhuD and $\mathrm{MhuD}_{\mathrm{CH}}$. The $\operatorname{Trp66}$ fluorescence intensity for a mixture of MhuD, MhuD-heme, and heme depends upon equation (1):

$$
\begin{align*}
& =\frac{\left([M h u D]_{T}+[\text { heme }]_{T}+K_{d 1}\right)-\sqrt{\left([M h u D]_{T}+[\text { heme }]_{T}+K_{d 1}\right)^{2}-4[M h u D]}}{2} \\
& X\left(\frac{F_{\min }-F_{\max }}{[M h u D]_{T}}\right)+F_{\max }
\end{align*}
$$

where $\left[\mathrm{MhuD}_{T}\right]$ is the total MhuD concentration, $\left.[\text { heme }]_{T}\right]$ is the total heme concentration, $\mathrm{F}_{\text {max }}$ is the fluorescence intensity in the absence of heme, and $\mathrm{F}_{\text {min }}$ is the fluorescence intensity for fully heme-bound MhuD. The emission intensity at 336 nm as a function of [heme ${ }_{T}$ ] was fit to equation (1) using GraphPad Prism 7.0 to determine $K_{d 1}$ and its standard error. The complete derivation of equation (1) has been reported previously for Staphylococcus aureus IsdG, ${ }^{4}$ and a similar equation can be derived for $\mathrm{MhuD}_{\mathrm{CH}}$.

The Abs-detected titrations were analyzed to extract $K_{d 2}$ for MhuD and MhuD ${ }_{\mathrm{CH}}$. The Abs intensity at 410 nm for a mixture of MhuD, MhuD-diheme, MhuD-heme, and heme depends upon equation (2):

$$
A_{410}
$$

$$
\begin{equation*}
=\frac{\varepsilon_{\text {MhuD-diheme }}\left[\mathrm{MhuD}_{T}\right][\text { heme }]^{2}+\varepsilon_{\text {MhuD -heme }} K_{d 2}\left[\text { MhuD }_{T}\right][\text { heme }]}{[\text { heme }]^{2}+K_{d 2}[\text { heme }]+K_{d 1} K_{d 2}} \tag{2}
\end{equation*}
$$

where $\varepsilon_{\text {MhuD-diheme }}, \varepsilon_{\text {MhuD-heme }}$, and $\varepsilon_{\text {heme }}$ are the molar extinction coefficients for MhuD-diheme, MhuD-heme, and heme, respectively, at 410 nm . The Abs intensity at 410 nm as a function of [heme ${ }_{T}$ ] was fit to equation (2) using Graph Pad Prism 7.0 to determine $K_{d 2}$ and its standard error. $K_{d 1}$ was constrained to the value determined above from analysis of the fluorescence-detected
titrations. A similar equation can be derived for $\mathrm{MhuD}_{\mathrm{CH}}$. The complete derivation of equation (2) is shown below.

The Abs-detected heme titrations intoWT MhuD were performed to extract the dissociation constant ( $K_{d 2}$ ) of binding for the second heme substrate. The Abs intensity at 410 nm for a mixture containing MhuD-diheme, MhuD-heme, MhuD and heme depends on equation (3):
$A_{410}=\varepsilon_{\text {MhuD-diheme }}[M h u D-$ diheme $]+\varepsilon_{\text {MhuD-heme }}[M h u D-$ heme $]+\varepsilon_{\text {heme }}[$ heme $]$
where, $\varepsilon_{M h u D-d i h e m e, ~} \varepsilon_{M h u D^{-} \text {heme }}$ and $\varepsilon_{\text {heme }}$ are the extinction coefficients of these species at 410 nm . The $K_{d l}$ for the first heme binding to MhuD is given by equation (4):
$K_{d 1}=\frac{[\text { MhuD }][\text { Heme }]}{[\text { MhuD }- \text { heme }]}$

The $K_{d 2}$ for the second heme binding to MhuD is given by equation (5):
$K_{d 2}=\frac{[\text { MhuD }- \text { heme }][\text { Heme }]}{[\text { MhuD }- \text { diheme }]}$

The total amount of $\mathrm{MhuD}\left(\mathrm{MhuD}_{\mathrm{T}}\right)$ is defined by equation (6):
$\left[M h u D_{T}\right]=[M h u D]+[M h u D-$ diheme $]+[M h u D-$ heme $]$

Rearranging equation (6):
$[M h u D]=\left[M h u D_{T}\right]-[M h u D-$ diheme $]-[M h u D-$ heme $]$

The total amount of heme $\left(\right.$ heme $\left._{T}\right)$ is defined by equation (8):
$\left[\right.$ heme $\left._{T}\right]=[$ heme $]+2[$ MhuD - diheme $]+[$ MhuD - heme $]$

This equation can be rearranged to give equation (9)
$[$ heme $]=\left[\right.$ heme $\left._{T}\right]-2[$ MhuD - diheme $]-[$ MhuD - heme $]$

Next, we have introduced a dummy variable, $\alpha$, which is given by equation (10) ${ }^{5}$
$\underset{\text { Let }}{\alpha=\frac{[\text { MhuD }- \text { diheme }]}{[\text { heme }]^{2}}}$
(10)

By dividing [MhuD-diheme], [MhuD-heme] and [MhuD] by $\alpha$, we get equations (11) - (13) respectively:
$\frac{[\text { MhuD }- \text { diheme }]}{\alpha}=[\text { heme }]^{2}$
$\frac{[\text { MhuD }- \text { heme }]}{\alpha}=K_{d 2}[$ heme $]$
$\frac{[M h u D]}{\alpha}=K_{d 1} K_{d 2}$

Dividing equation (6) by $\alpha$ using equations (11), (12) and (13) results in equation (14):
$\frac{\left[\mathrm{MhuD}_{T}\right]}{\alpha}=[\text { heme }]^{2}+K_{d 2}[$ heme $]+K_{d 1} K_{d 2}$

Dividing equation (9) by $\alpha$ and substituting with equations (11) and (12) gives equation (15):
$\frac{\left[\text { heme }_{T}\right]}{\alpha}=2[\text { heme }]^{2}+K_{d 2}[$ heme $]+\frac{[\text { heme }]}{\alpha}$

Dividing equation (13) by equation (14) gives equation (16):
$[M h u D]=\frac{\left[M h u D_{T}\right] K_{d 1} K_{d 2}}{[\text { heme }]^{2}+K_{d 2}[\text { heme }]+K_{d 1} K_{d 2}}$

Dividing [heme] by $\alpha$ and using equation (10), we get equation (17):
$\frac{[\text { heme }]}{\alpha}=\frac{[\text { heme }]^{3}}{[\text { MhuD }- \text { diheme }]}$

Multiplying equation (4) and (5), we get equation (18):
$K_{d 1} K_{d 2}=\frac{[\text { heme }]^{2}[\text { MhuD }]}{[\text { MhuD }- \text { diheme }]}$

Rearranging equation (18) results in equation (19):
$[$ MhuD - diheme $]=\frac{[h e m e]^{2}[\text { MhuD }]}{K_{d 1} K_{d 2}}$

Substitution of equation (19) into equation (17) gives equation (20):
$\frac{[\text { heme }]}{\alpha}=\frac{[\text { heme }] K_{d 1} K_{d 2}}{[\text { MhuD }]}$

Substitution of equation (16) into equation (20) gives equation (21):
$\frac{[\text { heme }]}{\alpha}=\frac{[\text { heme }]^{3}+[\text { heme }]^{2} K_{d 2}+[\text { heme }] K_{d 1} K_{d 2}}{\left[\mathrm{MhuD}_{T}\right]}$

Substitution of equation (21) in equation (15), gives equation (22)

$$
\begin{aligned}
\frac{\left[\text { heme }_{T}\right]}{\alpha} \\
\quad=\frac{2\left[\mathrm{MhuD}_{T}\right][\text { heme }]^{2}+\left[\mathrm{MhuD}_{T}\right][\text { heme }] K_{d 2}+\left[\text { heme }^{3}+[\text { heme }]^{2} K_{d 2}\right.}{\left[M h u D_{T}\right]}
\end{aligned}
$$

Dividing equation (22) by equation (14) and solving, gives cubic equation (23):

$$
\begin{align*}
& {[\text { heme }]^{3}+\left[\text { heme }^{2}\left(2\left[\mathrm{MhuD}_{T}\right]+K_{d 2}-\left[\text { heme }_{T}\right]\right)\right.} \\
& +[\text { heme }]\left(\left[\mathrm{MhuD}_{T}\right] K_{d 2}+K_{d 1} K_{d 2}-\left[\text { heme }_{T}\right] K_{d 2}\right)-\left[\text { heme }_{T}\right] K_{d 1} K_{d 2}=0 \tag{23}
\end{align*}
$$

The above equation (23) is in the form $x^{3}+a x^{2}+b x+c=0$, where:
$\mathrm{a}=2\left[M h u D_{T}\right]+K_{d 2}-\left[\right.$ heme $\left._{T}\right]$
$\mathrm{b}=\left(\left[M h u D_{T}\right] K_{d 2}+K_{d 1} K_{d 2}-\left[h e m e e_{T}\right] K_{d 2}\right)$
$\mathrm{c}=-\left[\right.$ heme $\left._{T}\right] K_{d 1} K_{d 2}$
$\mathrm{x}=[$ heme $]$

Solving and simplifying the cubic equation for x gives three real roots which is given by equation (24.a), (24.b) and (24.c) : ${ }^{6}$
$x=2 \sqrt{-Q} \cos \left(\frac{\varnothing}{3}\right)-\frac{a}{3}$
$x=2 \sqrt{-Q} \cos \left(\frac{\emptyset}{3}+120^{\circ}\right)-\frac{a}{3}$
$x=2 \sqrt{-Q} \cos \left(\frac{\emptyset}{3}+240^{\circ}\right)-\frac{a}{3}$
where,

$$
\begin{equation*}
Q=\frac{3 b-a^{2}}{9} \tag{25.a}
\end{equation*}
$$

$\emptyset=\cos ^{-1}\left(\frac{R}{\sqrt{-Q^{3}}}\right)$
$R=\frac{9 a b-27 c-2 a^{3}}{54}$

Equation (24.a) is the relevant solution of the cubic equation for this expreiment. Other solutions: (24.b) and (24.c) did not provide best fits for the experiment and hence would not be used to fit the data to calculate $K_{d 2}$. Therefore, equation (24.a) will be used for rest of the analysis. Dividing equation (1) by $\alpha$ yields equation (26):
$\frac{A_{410}}{\alpha}=\frac{\varepsilon_{\text {MhuD }- \text { diheme }}[\text { MhuD }- \text { diheme }]}{\alpha}+\frac{\varepsilon_{\text {MhuD }- \text { heme }}[\text { MhuD - heme }]}{\alpha}+\frac{\varepsilon_{\text {heme }}[\text { heme }]}{\alpha}$

Substituting the values from equation (11), (12) and (21) to equation (26) gives equation (27):

$$
\begin{aligned}
& \frac{A_{410}}{\alpha} \\
& \quad=\varepsilon_{\text {MhuD-diheme }}[\text { heme }]^{2}+\varepsilon_{\text {MhuD -heme }} K_{d 2}[\text { heme }]+\varepsilon_{h e m e}\left([\text { heme }]^{3}+\right. \\
& \quad)
\end{aligned}
$$

Dividing equation (27) by equation (14) and solving for $\mathrm{A}_{410}$ gives equation (28):

$$
=\frac{\left[M h u D_{T}\right] \varepsilon_{M h u D-\text { diheme }}[\text { heme }]^{2}+\left[M h u D_{T}\right] \varepsilon_{M h u D-\text { heme }} K_{d 2}[\text { heme }]}{[\text { heme }]^{2}+K_{d 2}[\text { heme }]+K_{d 1} K_{d 2}}+
$$

Equation (28) and equation (24.a) was rewritten in Graph Pad Prism 7.0 to fit the data collected from UV/Vis spectrophotometer and extract $K_{d 2}$ as equation (29):
$A=2 * P+K d 2-X$
$B=(P * K d 2)+(K d 1 * K d 2)-(X * K d 2)$
$C=-(X * K d 1 * K d 2)$
$Q=((3 * B)-(A * A)) / 9$
$R=((9 * A * B)-(27 * C)-(2 * A * A * A)) / 54$
$T=\arccos \left(\frac{R}{\operatorname{sqrt}(-(Q * Q * Q))}\right)$
$H=\left(\left(2 *(\operatorname{sqrt}(-Q)) * \cos \left(\frac{T}{3}\right)\right)\right)-\left(\frac{A}{3}\right)$

Y

$$
\begin{equation*}
=\frac{(P * E * H * H)+(F * P * K d 2 * H)+(G *((H * H * H)+(K d 2 * H,}{(H * H)+(K d 2 * H)+(K d 1 * K d 2)} \tag{29}
\end{equation*}
$$

where, E, F and G are extinction coefficient of MhuD-diheme, MhuD-heme and heme, P is the total concentration of the protein. Abs data was used to plot abosrobance at $410 \mathrm{~nm}\left(\mathrm{~A}_{410}\right)$ as a function of total heme concentration $\left(\right.$ heme $\left._{T}\right)$.


Figure S1. Fluorescence-detected titration of heme into 100 nM MhuD in 50 mM Tris pH $7.4,150 \mathrm{mM} \mathrm{NaCl}$. The error bars represent the standard deviation of three independent trials. The emission intensity was fit to equation (i) yielding a $K_{d 1}$ of $4.2 \pm 1.4 \mathrm{nM}$. Inset: Emission spectra with 0 (solid red), 4 (solid blue), and intermediate (dashed gray) equivalents of heme


Figure S2. Abs-detected heme titration into $5 \mu \mathrm{M}$ MhuD in 50 mM Tris pH $7.4,150 \mathrm{mM} \mathrm{NaCl}$. The spectra represent MhuD with 0 (solid blue), 3 (solid red), and intermediate (dashed gray) equivalents of heme. Inset: The error bars represent the standard deviation of three independent trials. The Abs-detected heme titration was fit to equation (ii) yielding a $K_{d 2}$ of $4.4 \pm 7.2 \mathrm{nM}$.

Table S1: Soret band wavelength upon addition of $0.2,1,2$ and 3 equivalents of heme to MhuD.
Soret band, $\lambda_{\text {max }}(\mathrm{nm})$

| Heme Equivalents | Trial 1 | Trial 2 | Trial 3 | Average |
| :---: | :---: | :---: | :---: | :---: |
| 0.2 | 407 | 408 | 407 | 407 |
| 1 | 401 | 401 | 402 | 401 |
| 2 | 401 | 403 | 400 | 401 |
| 3 | 409 | 410 | 410 | 410 |

Table S2: Soret band wavelength upon addition of $0.2,1,2$ and 3 equivalents of heme to $\mathrm{MhuD}_{\mathrm{CH}}$.

## Soret band, $\lambda_{\text {max }}(\mathbf{n m})$

| Heme Equivalents | Trial 1 | Trial 2 | Trial 3 | Average |
| :---: | :---: | :---: | :---: | :---: |
| 0.2 | 408 | 408 | 408 | 408 |
| 1 | 401 | 399 | 399 | 400 |
| 2 | 395 | 395 | 395 | 395 |
| 3 | 394 | 393 | 394 | 394 |



Figure S3. Fractionation of MhuD as a function of heme concentration. The curves represent the fraction of MhuD (dotted blue), MhuD-heme (solid red), and MhuD-diheme (dashed green) present for heme concentrations between 1 nM and $100 \mu \mathrm{M}$. Under typical conditions, the primary form of MhuD is MhuD-heme, but significant amounts of MhuD-diheme can be formed under heme replete conditions.


Figure S4: FPLC chromatograph for purification of MhuD. The 280 nm absorbance (black trace) and percentage of Buffer B ( 50 mM Tris, $350 \mathrm{mM} \mathrm{NaCl}, 500 \mathrm{mM}$ Imidazole pH 7.8 , red trace) are plotted as function of buffer run through the column. Numbers in boxes on top of the x -axis refer to fractions collected during FPLC.


Figure S5: MhuD was obtained as assessed by SDS-PAGE gel electrophoresis. From left to right, the lanes correspond to: (A) FPLC fraction 2, (B) FPLC fraction 4, (C) FPLC fractions 7-9, and (D) PageRuler Plus prestained protein ladder (Pierce).

Table S3: MhuD ${ }_{\text {CH }}$ gene sequence


Figure S6: Purity of MhuD assessed by SDS-PAGE. (A) MhuD, (B) $1 / 10$ dilution of MhuD, (C) $1 / 100$, dilution of MhuD, and (D) PageRuler Plus prestained protein ladder (Pierce)

| M-46 <br> ATG | $\mathrm{H}-45$ <br> CAC | H-44 <br> CAT | $\mathrm{H}-43$ <br> CAT | $\mathrm{H}-42$ <br> CAT | $\mathrm{H}-41$ <br> CAT | H-40 | S-39 TCT | S-38 TCT | G-37 GGT | L-36 CTG | V-35 GTG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P-34 | R-33 | G-32 | S-31 | G-30 | M-29 | K-28 | E-27 | T-26 | A-25 | A-24 | A-23 |
| CCA | CGC | GGT | TCT | GGT | ATG | AAA | GAA | ACC | GCT | GCT | GCT |
| K-22 | F-21 | E-20 | R-19 | Q-18 | H-17 | M-16 | D-15 | S-14 | P-13 | D-12 | L-11 |
| AAA | TTC | GAA | CGC | CAG | CAC | ATG | GAC | AGC | CCA | GAT | CTG |
| G-10 | T-9 | D-8 | D-7 | D-6 | D-5 | K-4 | A-3 | M-2 | A-1 | P2 | V3 |
| GGT | ACC | GAC | GAC | GAC | GAC | AAG | GCC | ATG | GCC | CCA | GTG |
| V4 | K5 | 156 | N7 | A8 | 19 | E10 | V11 | P12 | A13 | G14 | A15 |
| GTG | AAG | ATC | AAC | GCA | ATC | GAG | GTG | CCC | GCC | GGC | GCT |
| G16 | P17 | E18 | L19 | E20 | K21 | R22 | F23 | A24 | H25 | R26 | A27 |
| GGC | CCC | GAG | CTG | GAG | AAG | CGG | TTC | GCT | CAC | CGC | GCG |
| H28 | A29 | V30 | E31 | N32 | S33 | P34 | G35 | F36 | L37 | G38 | F39 |
| CAC | GCG | GTC | GAG | AAC | TCC | CCG | GGT | TTC | CTC | GGC | TTT |
| Q40 | L41 | L42 | R43 | P44 | V45 | K46 | G47 | E48 | E49 | R50 | Y51 |
| CAG | CTG | TTA | CGT | CCG | GTC | AAG | GGT | GAA | GAA | CGC | TAC |
| F52 | V53 | V54 | T55 | H56 | W57 | E58 | S59 | D60 | E61 | A62 | F63 |
| TTC | GTG | GTG | ACA | CAC | TGG | GAG | TCC | GAT | GAA | GCA | TTC |
| Q64 | A65 | W66 | A67 | N68 | G69 | P70 | A71 | 172 | A73 | A74 | H75 |
| CAG | GCG | TGG | GCA | AAC | GGG | CCC | GCC | ATC | GCA | GCC | CAT |
| A76 | G77 | H78 | R79 | A80 | N81 | P82 | V83 | A84 | T85 | G86 | A87 |
| GCC | GGA | CAC | CGG | GCC | AAC | CCC | GTG | GCG | ACC | GGT | GCT |
| S88 | L89 | L90 | E91 | F92 | E93 | V94 | V95 | L96 | D97 | V98 | G99 |
| TCG | CTG | CTG | GAA | TTC | GAG | GTC | GTG | CTT | GAC | GTC | GGT |
| G100 | T101 | G102 | K103 | T104 | A105 |  |  |  |  |  |  |
| GGG | ACC | GGC | AAG | ACT | GCA |  |  |  |  |  |  |



Figure S7: FPLC chromatograph for purification of uncleaved MhuD ${ }_{\mathrm{CH}}$. The 280 nm absorbance (black trace) and percentage of Buffer B ( 50 mM Tris, $350 \mathrm{mM} \mathrm{NaCl}, 500 \mathrm{mM}$ Imidazole pH 7.8 , red trace) are plotted as a function of buffer run through the column. Numbers in boxes on top of the x -axis refer to fractions collected during FPLC.


Figure S8: Uncleaved $\mathrm{MhuD}_{\mathrm{CH}}$ was obtained as assessed by SDS-PAGE gel electrophoresis. From left to right, the lanes represent: (A) FPLC fraction 2, (B) FPLC fraction 3, (C) FPLC fractions 5-7, and (D) PageRuler Plus prestained protein ladder (Pierce).


Figure S9: FPLC chromatograph for purification of cleaved MhuD ${ }_{\mathrm{CH}}$ (Black Trace). The 280 nm absorbance (black trace) and percentage buffer B ( 20 mM Tris, 500 mM NaCl pH 8.0 , red trace). Numbers in boxes on top of the $x$-axis refer to fractions collected during FPLC.


Figure S10: Cleaved MhuD ${ }_{\mathrm{CH}}$ was obtained as assessed by SDS-PAGE gel electrophoresis. From left to right, the lanes correspond to: (A) FPLC fractions 3-5, (B) FPLC fractions 8-11, (C) PageRuler Plus prestained protein ladder (Pierce), (D) FPLC fractions 20-22, and (E) $\mathrm{MhuD}_{\mathrm{CH}}$ enterokinase reaction mixture prior to anion-exchange chromatography.


Figure S11: Purity of $\mathrm{MhuD}_{\mathrm{CH}}$ assessed by SDS-PAGE. (A) $1 / 100$ dilultion of $\mathrm{MhuD}_{\mathrm{CH}}$, (B) $1 / 20$ dilution of $\mathrm{MhuD}_{\mathrm{CH}}$, (C) $1 / 10$, dilution of $\mathrm{MhuD}_{\mathrm{CH}}$, (D) Cleaved $\mathrm{MhuD}_{\mathrm{CH}}$, and (E) PageRuler Plus prestained protein ladder (Pierce)


Figure S12: ESI-MS of 30 uM cleaved $\mathrm{MhuD}_{\mathrm{CH}}$ in 50 mM Tris $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}$. The observed molecular weight of $11,327 \mathrm{Da}$ is in excellent aggrement with the expected molecular weight $11,327 \mathrm{Da}$.

## References

1. Chim, N.; Iniguez, A.; Nguyen, T. Q.; Goulding, C. W., Unusual diheme conformation of the heme-degrading protein from Mycobacterium tuberculosis. J. Mol. Biol. 2010, 395 (3), 595-608.
2. Graves, A. B.; Morse, R. P.; Chao, A.; Iniguez, A.; Goulding, C. W.; Liptak, M. D., Crystallographic and spectroscopic insights into heme degradation by Mycobacterium tuberculosis MhuD. Inorg. Chem. 2014, 53, 5931-5940.
3. Berry, E. A.; Trumpower, B. L., Simultaneous Determination of Hemes $a, b$, and $c$ from Pyridine Hemochrome Spectra. Anal. Biochem. 1987, 161 (1), 1-15.
4. Conger, M. A.; Pokhrel, D.; Liptak, M. D., Tight binding of heme to Staphylococcus aureus IsdG and Isdl precludes design of a competitive inhibitor. Metallomics 2017, 9, 556-563.
5. King, D. W.; Kester, D. R., A General-Approach for Calculating Polyprotic Acid Speciation and Buffer Capacity. J. Chem. Educ. 1990, 67 (11), 932-933.
6. Weisstein, E. W. Cubic Formula. http://mathworld.wolfram.com/CubicFormula.html.
