Is hydroxypyridonate 3,4,3-LI(1,2-HOPO) a good competitor of fetuin for uranyl metabolism?

Supplementary Information

I. Determination of apparent affinity constant

For each HOPO concentration, the free part of UO_2^{2+} has been quantified by measuring the corresponding SPR signals in duplicates. From these signals, and thanks to a calibration curve (SPR signal = f (UO_2^{2+}) previously established within the same experiment, the unbound UO_2^{2+} could be calculated. A binding isotherm has been obtained by plotting the response SPR signal (Resonance Units, RU) corresponding to the unbound UO_2^{2+} versus the ligand concentration (here log [HOPO]). This gives a sigmoid curve that could be fitted to a four parameter logistic curve to calculate the apparent K_D . These parameters are the maximum response corresponding to 50 nM UO_2^{2+}), the minimum response corresponding to highest HOPO concentration leading to total UO_2^{2+} consumption, the slope and the inflexion point (see Table below and reference [15] for experimental details). This point corresponds to 50 % of UO_2^{2+} occupancy, thus giving the apparent K_D .

Figure S1. Determination of the apparent K_D of HOPO for UO_2^{2+} by SPR. Uranyl (0.5x10⁻⁷ M) in TRIS buffer and Na_2CO_3 (5x10⁻⁶ M) was contacted with varied HOPO concentrations from 0.05 to 250x10⁻⁹ M and in duplicates (diamonds). The curve of the binding isotherm (continuous black line) is fitted to a four parameter logistic curve. The parameters of this curve are given in the table

1 below. The apparent K_D of HOPO is deduced from the HOPO concentration giving 50 % of signal (i.e 50% occupancy).

Table S1. Best fit parameters for the binding isotherm of uranyl with HOPO

MIN (RU)	3.7 ± 0.2	
MAX (RU)	18.1 ± 0.3	K _D (50% signal)
Inflexion point	-7.49 ± 0.03	32 ± 0.3x10 ⁻⁹ M
(log)		
Slope	2.07	

II. Titration of HOPO by uranyl; UV-Vis spectroscopy

In order to further define the stoichiometry of the $UO_2^{2^+}$ -HOPO complex, titration of HOPO by uranyl has been performed at 22 ± 2 °C. The evolution of the HOPO UV-Vis spectra is presented (Figure S2) within the 250-500 nm range. The aquo-ion of $UO_2^{2^+}$ has a negligible absorption between within this range. HOPO at pH 7.4 presents a maximum absorbance at λ = 328 nm (ϵ = 20.3 L.mol⁻¹.cm⁻¹).

Changes on the UV-Vis spectra were followed for successive additions of 0.1 equivalents of UO_2^{2+} from 0 up to 2 UO_2^{2+} equivalents, and for additions of 0.5 equivalents up to 4 equivalents. The first successive additions from 0 to 2 UO_2^{2+} equivalents led to a decrease of the 328 nm signal associated with a blue shift of the wavelength from 328 to 317 nm for 1 equivalent, and then to 314 nm for 2 equivalents. The ligand band at 328 nm is blue shifted upon the successive UO_2^{2+} addition because the π - π^* transition is affected by the complexation with uranyl. After this 2:1 ratio, the absorption increase at 314 and 328 nm remain proportional to UO_2^{2+} additions without modification of the wavelength maximum.

The ratio of absorbance at 328 over 314 nm decreases with a single slope up to $2 \text{ UO}_2^{2^+}$ equivalents where a clear breakpoint is observed, followed then by a plateau. (Figure S2, insert). Knowingly, HOPO is an octadentate chelator composed of a spermine backbone coupled to four hydroxypyridinone groups for metal binding and the nature of $\text{UO}_2^{2^+}$ -ligand complex formation comes to occupy in equatorial plane, that define HOPO as having four potential bidentate hydroxypyridinone rings for uranyl complexation.

Figure S2. UV-vis titration of HOPO by UO_2^{2+} . Evolution of HOPO spectra (5x10⁻⁵ M in TRIS buffer at 22 ± 2 °C upon UO_2^{2+} additions. Successive additions of 0.1 UO_2^{2+} equivalents from 0 (continuous black line) to 1 (continuous blue line) and 2 equivalents (continuous red line); then additions of 0.5 equivalents from 2 to 3 (continuous green line) and 4 equivalents (dashed green line). Insert: evolution of the absorbance ratio at 328 vs 314 nm (wavelengths corresponding to the 2 black arrows on the spectra) upon UO_2^{2+} additions.

III. EXAFS data analysis

Figure S3. Moduli and imaginary parts of the Fourier tranforms of the EXAFS spectra of UO_2^{2+} -HOPO and UO_2^{2+} -fetuin (U- for clarity in the Figure) at pH = 6.0. Black curve = experiment, black dots = fit of the imaginary part, empty dots = fit of the modulus.

Figure S4. Comparison between the EXAFS spectra of U-HOPO, U-fetuin and U-HOPO-fetuin (enlarged spectral area between 4 and 9 Å⁻¹).

IV. DFT calculations

Table S2. xyz coordinates of the two calculated structures presented in Fig. 3 (in Å)

• Without water molecule:

С	2.08799200	1.58084900	3.51463700
С	1.63408600	2.15470100	4.68312700
С	0.80984800	1.39287300	5.55370900
С	0.47790300	0.08977400	5.25779800
С	0.94760500	-0.55540600	4.06864200
Ν	1.72688100	0.28486500	3.23406900
Н	0.44648700	1.84500800	6.46917500
Н	1.93524100	3.16229300	4.93381800
Н	-0.13757800	-0.50680700	5.91868500
0	2.29907600	-0.29669000	2.06035100
0	0.72307600	-1.75999500	3.70878000
С	3.07532200	2.30823100	2.62658800
0	4.24170700	2.49848900	3.10597400
Ν	2.71132600	2.78994500	1.41649500
С	1.32514300	2.73974800	0.89068900
н	1.40020400	2.71993900	-0.20057000
н	0.86147300	1.79459400	1.17705800
С	-4.22008000	-2.13835500	1.26281300
C	-4.61027900	-3.17719900	2.10187600
C	-3.84681600	-4.35625100	2.18168900
C	-2.68647900	-4.48809900	1.43371200
C	-2.27536300	-3.43748500	0.59020700
N	-3 07359300	-2 30560700	0 51831700
н	-4 16032100	-5 15798900	2 83863900
н	-5 50595500	-3 03557100	2 68814300
н	-2 06234100	-5 36998500	1 48201200
0	-2 61330300	-1 33908400	-0 38832100
0	-1 20006100	-3 41323500	-0 15570300
C C	-5 04847700	-0.88152300	1 23058400
0	-6 06047100	-0.81676200	2 00749600
N	-4 70168600	0.01070200	0 39197000
н	-3.86150600	-0.02822200	-0 177/3000
C C	-5.00100000	1 26851/00	0.17743000
с ц	-5.47508500	1 71862400	-0 70757500
ц	-5.43317000	1.71802400	0.58202400
C C	-0.30330200	2 80677700	-2 41409000
C C	-1.51351000	2.80077700	-2.41409000
C C	0 27820600	2 50228400	4 15274900
C C	0.37820000	2 21606800	4.13374800
C C	0.32947300	2.31090800	-4.01932700
N	1 22/62200	1.54595900	-3.06104500
	-1.23403200	1.02303100	-2.33307100
	-0.00174300	4.24130000	-4.87990000
n u	-2.07545700	4.00918100	-5.45790200
0	1 65603100	2.03444300	-4.010300UU
0	-1.02083100	0.00049900	-1.4/230300
C C	0.47991200	0.13010300	-2.02083200
	-3.12100800	3.0851/300	-1.2281/000
	-4.21241900	3.34134400	-2.1/445/00
IN	-3.01084000	3.1/08/400	-0.21020400

С	-4.18957200	3.61567400	0.58109600
Н	-3.83205300	4.33820400	1.32124700
Н	-4.85804400	4.14074100	-0.10184400
С	4.45487100	-1.62706800	-0.79939000
С	5.31520900	-2.65703100	-0.43448500
С	4.82147800	-3.96332600	-0.25771700
С	3.47094100	-4.23399700	-0.43697500
С	2.58831700	-3.19648600	-0.80357700
Ν	3.12706300	-1.92972500	-0.98983300
Н	5.49696100	-4.75913900	0.03157600
Н	6.35634600	-2.41342400	-0.28079000
Н	3.05727500	-5.22339900	-0.29443400
0	2.20262000	-0.98032500	-1.43700100
0	1.29720500	-3.29303100	-1.00478600
С	4.98634000	-0.22625300	-0.94213300
0	6.24690700	-0.04081800	-0.86631800
N	4.10418900	0.78128800	-1.12268000
н	3.13139900	0.49930600	-1.28241700
С	4.55221900	2.17087900	-1.31553300
Н	3.78832200	2.68759800	-1.90329200
Н	5.46665700	2.14053000	-1.91491600
С	-4.95570800	2.47988300	1.28273200
Н	-4.34121900	2.02233200	2.06735000
Н	-5.80705800	2.94581600	1.79419500
С	-1.75128300	2.94882600	0.54568000
Н	-2.04455800	2.75616400	1.58187200
Н	-1.28551100	2.03179000	0.18051000
С	-0.79406500	4.15345200	0.49538100
Н	-1.31424500	5.05165500	0.85068000
Н	-0.51401500	4.35464900	-0.54687200
С	0.47922500	3.94981400	1.33923700
Н	0.22507300	3.83902900	2.40147900
Н	1.08552700	4.86070700	1.26047800
С	3.69007800	3.65795500	0.69856800
Н	4.12112100	4.35322700	1.42460900
Н	3.11355200	4.24586000	-0.02024700
С	4.85647200	2.93557200	-0.00758200
Н	5.35820700	2.26317500	0.69433600
Н	5.58140700	3.72323800	-0.25225800
U	-0.27323700	-1.46010000	-1.24617300
0	-0.84197815	-2.19961017	-2.79955712
0	0.21744205	-0.80597229	0.38090782
Н	1.53450100	-0.64265900	1.50074700

• With two water molecules

С	1.82058100	-1.37471800	2.67562900
С	1.75038500	-1.36351800	4.04884200
С	0.73385700	-2.11604000	4.69568600
С	-0.16262900	-2.86653700	3.97087400
С	-0.11251100	-2.92566700	2.53809200
Ν	0.90697200	-2.12418500	1.97460000
Н	0.67265500	-2.10076400	5.77746400
Н	2.46592900	-0.78389400	4.61530800
Н	-0.93272400	-3.45447200	4.45252200
0	1.11475500	-2.20357400	0.56397400
0	-0.87836200	-3.59962000	1.78042500

С	2.93703500	-0.68843000	1.92274000
0	4.08693600	-1.22117500	1.97513400
Ν	2.67962200	0.47418700	1.28192700
С	1.34986400	1.13920900	1.28053300
Н	1.25144300	1.63702200	0.31143200
Н	0.57891500	0.37053800	1.31997200
С	-5.43088000	-1.47502900	1.36024300
C	-6.09957900	-2.62395000	1.76079900
C	-5.93234100	-3.83063500	1.05729500
C	-5 09585700	-3 88811100	-0.04668100
C	-4 40630100	-2 72925200	-0 45477500
N	-4 59892000	-1 57007800	0.26678800
н	-6 46321400	-4 71738600	1 38050000
ц	-6 7/06/100	-2 55/15000	2 6201/1000
Ц	-0.74904100	-2.55415000	-0.61285500
0	2 97204500	-4.79099800	0.01285500
0	-3.87394300	-0.47247200	-0.22216900
0	-5.59175000	-2.02809000	-1.4/110500
	-5.00431900	-0.19277600	2.11309300
0	-6.41178000	-0.23438000	3.141//800
N	-5.10//5/00	0.94544100	1.65/33800
H	-4.48943500	0.87404600	0.84499300
C	-5.35/9//00	2.24065600	2.31123500
Н	-5.34605500	3.00321500	1.53019500
Н	-6.36229300	2.20407300	2.73507000
С	-1.89729400	3.75546800	-0.55543000
С	-1.22155000	4.86423900	-1.04542600
С	-0.37570100	4.73142000	-2.16237200
С	-0.22253800	3.49914700	-2.78218600
С	-0.92735400	2.38262600	-2.29328500
Ν	-1.74962300	2.56384600	-1.20158300
Н	0.15925000	5.59576300	-2.53541500
Н	-1.34662700	5.81615500	-0.54821800
Н	0.42226500	3.36169000	-3.63862800
0	-2.44323100	1.42464200	-0.77681200
0	-0.88457000	1.16294900	-2.77458900
С	-2.82520400	3.90179900	0.62269700
0	-3.81629000	4.68426800	0.47969000
Ν	-2.51466600	3.29888700	1.79596900
С	-3.29515900	3.64975000	3.01268700
н	-2.57863000	3.80693000	3.82410700
н	-3.79650500	4.59645000	2.81198300
С	8,40024000	0.37909000	-0.39194600
C	9.24718100	1.47223900	-0.25934900
C	10.56864900	1.28950300	0.18154300
C	11.02537700	0.02101300	0.48212000
C	10 19518500	-1 13322400	0 35794100
N	8 87046400	-0.88992700	-0.09350600
н	11 22669600	2 14499400	0.28661300
н	8 85//7/00	2.14455400	-0 501/2800
н	12 03864400	-0 1/1885100	0.30142000
0	8 050/7700	-2 02016600	-0 22/50200
0	10 57710000	-2.02010000	0.23433300
C C	10.37710000	-2.33124000 0 64571000	0.02312/00
	0.30122200	0.045/1900	1 1000000
N	0.00802900		-1.10200000
	0.14248900	-0.40420000	
	0.020/0300	-1.29643100	-0.03993800
L	4.70891400	-0.44645700	-1.20462200

Н	4.29826000	-1.27746300	-0.62564500
Н	4.61235700	-0.70932300	-2.26614400
С	-4.32321700	2.57919800	3.41887700
Н	-3.81382600	1.65912300	3.72666400
Н	-4.84428200	2.95704800	4.30666000
С	-1.34942600	2.38916000	1.97915200
Н	-1.57678100	1.77523700	2.85490600
Н	-1.31499900	1.71324300	1.12473300
С	-0.01165500	3.12519500	2.19173300
Н	-0.09797400	3.79450900	3.05550800
Н	0.20506500	3.75436200	1.32064900
С	1.16758400	2.15364400	2.43027300
Н	1.01638900	1.60702500	3.36924000
Н	2.08660900	2.73853700	2.54934800
С	3.77968500	1.19385500	0.58174200
Н	4.71187700	0.98695700	1.10862300
Н	3.57205800	2.26189700	0.67822500
С	3.87944900	0.81491500	-0.91153100
Н	4.29873900	1.66433300	-1.45041200
Н	2.87081700	0.63802400	-1.30505400
U	-2.23867700	-0.72724400	-1.99620500
0	-3.38531000	-0.29403700	-3.32506400
0	-1.06425475	-1.27390174	-0.71483477
Н	0.24086100	-1.97673600	0.11811900
0	-1.76601000	-2.96951500	-3.21627900
Н	-1.97566600	-2.98549200	-4.16901700
Н	-2.02012600	-3.81316200	-2.79681200
0	-0.30897700	-1.02934100	-3.56895500
н	0.14133600	-0.20072300	-3.81566900
Н	0.25023700	-1.82429400	-3.60598300