Suplementary Information

Pneumococcal histidine triads – involved not only in Zn(II), but also Ni(II) binding?

Adriana Miller,^a Dorota Dudek,^a Sławomir Potocki,^a Hanna Czapor-Irzabek,^b Henryk Kozłowski^{a,c} and Magdalena Rowińska-Żyrek*^a

10	20	30	40	50
MKINKKYLVG	SAAALILSVC	SYELGLYQAR	TVKENNRVSY	IDGKQATQKT
60	70	80	90	100
ENLTPDEVSK	REGINAEQIV	IKITDQGYVT	SHGDHYHYYN	GKVPYDAIFS
110	120	130	140	150
EELLMKDPNY	KLKDEDIVNE	VKGGYVIKVD	GKYYVYLKDA	AHADNVRTKE
160	170	180	190	200
EINRQKQEHS	QHREGGTPRN	DGAVALARSQ	GRYTTDDGYI	FNASDIIEDT
210	220	230	240	250
GDAYIVPHGD	HYHYIPKNEL	SASELAAAEA	FLSGRGNLSN	SRTYRRQNSD
260	270	280	290	300
NTSRTNWVPS	VSNPGTTNTN	TSNNSNTNSQ	ASQSNDIDSL	LKQLYALPLS
310	320	330	340	350
QRHVESDGLV	FDPAQITSRT	ARGVAVPHGD	HYHFIPYSQM	SELEERIARI
360	370	380	390	400
IPLRYRSNHW	VPDSRPEQPS	PQPTPEPSPG	PQPAPNLKID	SNSSLVSQLV
410	420	430	440	450
RKVGEGYVFE	EKGISRYVFA	KDLPSETVKN	LESKLSKQES	VSHTLTAKKE
460	470	480	490	500
NVAPRDQEFY	DKAYNLLTEA	HKALFENKGR	NSDFQALDKL	LERLNDESTN
510	520	530	540	550
KEKLVDDLLA	FLAPITHPER	LGKPNSQIEY	TEDEVRIAQL	ADKYTTSDGY
560	570	580	590	600
IFDEHDIISD	EGDAYVTPHM	GHSHWIGKDS	LSDKEKVAAQ	AYTKEKGILP
610	620	630	640	650
PSPDADVKAN	PTGDSAAAIY	NRVKGEKRIP	LVRLPYMVEH	TVEVKNGNLI
660	670	680	690	700
IPHKDHYHNI	KFAWFDDHTY	KAPNGYTLED	LFATIKYYVE	HPDERPHSND
710	720	730	740	750
GWGNASEHVL	GKKDHSEDPN	KNFKADEEPV	EETPAEPEVP	QVETEKVEAQ
760	770	780	790	800
LKEAEVLLAK	VTDSSLKANA	TETLAGLRNN	LTLQIMDNNS	IMAEAEKLLA
810				
LLKGSNPSSV	SKEKIN			

Figure S1. PhtA sequence from *S. pneumoniae*; Uniprot accession numberA0A0T8RGX3. The studied histidine triads are underlined in red.

Figure S2. ESI-MS spectra of: A) Ni²⁺-Ac-HGDHYH-NH₂; B) Zn²⁺-Ac-HGDHYH-NH₂; C) Ni²⁺-Ac-HMGHSH-NH₂; D) Zn²⁺-Ac-HMGHSH-NH₂; E)Ni²⁺-Ac-HKDHYH-NH₂; F) Zn²⁺-Ac-HKDHYH-NH₂; M²⁺:L molar ratio=1:1, pH 6.

Figure S3.Isotopic distribution of: A) Ni²⁺-Ac-HGDHYH-NH₂; B) Zn²⁺-Ac-HGDHYH-NH₂; C) Ni²⁺-Ac-HMGHSH-NH₂; D) Zn²⁺-Ac-HMGHSH-NH₂; E) Ni²⁺-Ac-HKDHYH-NH₂; F) Zn²⁺-Ac-HKDHYH-NH₂; M²⁺:L molar ratio=1:1, pH 6.

B)

D)

Figure S4. Distribution diagrams for the formation of: A) Zn^{2+} complex with Ac-HGDHYH-NH₂; B) Ni²⁺ complex with Ac-HGDHYH-NH₂; C) Zn^{2+} complex with Ac-HGDHYH-NH₂; D) Ni²⁺ complex with Ac-HMGHSH-NH₂; E) Zn^{2+} complex with Ac-HKDHYH-NH₂; F) Ni²⁺ complex with Ac-HKDHYH-NH₂; T=298K, I=0,1M, [M²⁺]=0.5·10⁻³M; M²⁺:L molar ratio=1:1. K_d values at pH 7.4 for appropriate complexes were equal to: A) Zn^{2+} complex with Ac-HGDHYH-NH₂ = 7.80*10^{-10}; B) Ni²⁺ complex with Ac-HGDHYH-NH₂ = 1.28*10^{-13}; C) Zn^{2+} complex with Ac-HGDHYH-NH₂ = 3.73*10^{-8}; D) Ni²⁺ complex with Ac-HMGHSH-NH₂ = 4.23*10^{-7}; E) Zn^{2+} complex with Ac-HKDHYH-NH₂ = 4.36*10-6. Appropriate metal and ligand concentrations were taken from the Hyss programme.

F)

B)

Figure S5. CD spectra of Ni²⁺ complexes with: A) Ac-HGDHYH-NH₂; B) Ac-HMGHSH-NH₂; C) Ac-HKDHYH-NH₂; in pH range 3-11.

Figure S6. UV-Vis spectra of Ni²⁺ complexes with: A) Ac-HGDHYH-NH₂; B) Ac-HMGHSH-NH₂; C) Ac-HKDHYH-NH₂; in pH range 3-11.

Figure S7. ¹H-¹H TOCSY NMR spectra fragment of ligand (black), Zn²⁺ complex (blue) and Ni²⁺ complex (green), with ligand Ac-HGDHYH-NH₂(A, B), Ac-HMGHSH-NH₂ (C, D) and Ac-HKDHYH-NH₂ (E, F); [ligand]=3mM, [Zn²⁺]=3mM, [Ni²⁺]=1mM, pH=7, T=298K.

Figure S8. Competition plots between: A) Ac-HGDHYH-NH₂ (L1), Zn^{2+} and Ni^{2+} ; B) Ac-HMGHSH-NH₂ (L2), Zn^{2+} and Ni^{2+} ; C) Ac-HKDHYH-NH₂ (L3), Zn^{2+} and Ni^{2+} . Plots describe complex formation at different pH values in a

A)

hypothetical situation, in which equimolar amounts of the reagents are mixed. Calculations are based on binding constants from Table 1. T=298K, I=0,1M, [Zn²⁺]=[Ac-HGDHYH-NH₂]=[Ac-HMGHSH-NH₂]=[Ac-HKDHYH-NH₂]=0.001M.

Figure S9. CD spectra of a Ni²⁺, Ac-HMGHSH-NH₂ and Ac-HKDHYH-NH₂ solution titrated with Ac-HGDHYH-NH₂ at pH 10. [Ni²⁺] = [Ac-HMGHSH-NH₂] (L2) = [Ac-HKDHYH-NH₂] (L3) = 1 mM. 0.2 equivalents of Ac-HGDHYH-NH₂ were added in each step. A stepwise change of the typical Ni²⁺-L2 CD spectrum to a typical Ni²⁺-L1 spectrum is observed.