SUPPLEMENTARY INFORMATION

Abnormal concentrations of Cu-Co in *Haumaniastrum katangense, Haumaniastrum robertii* and *Aeolanthus biformifolius*: contamination or hyperaccumulation?

Antony van der Ent^{ab}, François Malaisse^{cd}, Peter D. Erskine^a, Jolanta Mesjasz-Przybyłowicz^e, Wojciech J. Przybyłowicz^{ef}, Alban D. Barnabas^e, Marta Sośnicka^{gh}, Hugh H. Harrisⁱ

a Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, Australia b Universite' de Lorraine – INRA, Laboratoire Sols et Environnement, UMR 1120, France c Biodiversity and Landscape Unit, Gembloux Agro-Bio Tech, Liège, University, Gembloux 5030, Belgium d National Botanic Gardens, Meise 1860, Belgium e Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa

f AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, 30-059 Kraków, Poland g GFZ, German Research Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, Germany

h University of the Witwatersrand, 1 Jan Smuts Ave, Braamfontein, Johannesburg 2000, South Africa

i Department of Chemistry, The University of Adelaide, South Australia, Australia

Supplementary Figure 1. Comparison of Cobalt XANES spectra of *Haumaniastrum katangense* (S.Moore) P.A.Duvign. & Plancke (Lamiaceae) roots, stems, leaves and flowers.

SR12ID01H49832.mda.dat

MVIEW Version 1.3

Supplementary Figure 2. Cobalt XANES spectra of *Haumaniastrum katangense* (S.Moore) P.A.Duvign. & Plancke (Lamiaceae) leaves showing the effect of photo-reduction. Black trace shows first XANES acquisition, and green trace shows repeat XANES acquisition.