Electronic Supplementary Information: Lanthanides compete with calcium for binding to cadherins and inhibit cadherinmediated cell adhesion

Lewis L. Brayshaw^a, Rosanna C. G. Smith^{a, b}, Magd Badaoui^c, James A. Irving^c, and Stephen R. Price^{*a}

- a. Research Department of Cell and Developmental Biology, UCL, Gower Street, London, WC1E 6BT
- b. Centre for Human Development, Stem Cells, and Regeneration, University of Southampton, Southampton, SO17 1BJ
- c. Research Department of Respiratory Medicine, UCL, Gower Street, London, WC1E 6BT

* Stephen.price@ucl.ac.uk

Supplementary Fig. 1 Cell aggregation assay using parental CHO cells with no cadherin expression. Prior to assay, cells were treated with 0.01% trypsin + 1 mM Ca²⁺. Assay was performed in 1 mM Ca²⁺. Scale bar = 200 μ m.

Supplementary Fig. 2 Influence of Gd^{3+} on E- and N-cadherin-mediated cell aggregation. Cell aggregation assays of (A-D) E-cadherin expressing CHO (E-CHO) and (E-H) N-cadherin expressing CHO (N-CHO) cells in different combinations of Ca^{2+} and Tb^{3+} . Prior to aggregation, cells were treated with 0.01% trypsin + 1 mM Ca^{2+} . Scale bar = 200 μ m.

Supplementary Fig. 3 Influence of Tb³⁺ on cadherin-mediated cell aggregation of cancer cell lines. Cell aggregation assays of (A-D) MCF-7 and (E-H) Hs578t cells in different combinations of Ca²⁺ and Tb³⁺. Prior to aggregation, cells were treated with 0.01% trypsin + 1 mM Ca²⁺. Aggregation potential of (I) MCF-7 and (J) Hs578t cells. The aggregation potential was calculated by 1 minus the number of single cells at end of aggregation (Ne) divided by the number of single cells at the beginning of aggregation (Ns). Aggregation potential = 1 - Ne/Ns. Scatterplots show individual values and bars represent the mean from four biological replicates (one-way ANOVA with Tukey's multiple comparisons test, significant differences are to 1 mM CaCl₂, **** indicates p≤0.0001, *** indicates p≤0.001). Scale bar = 200 µm.

Supplementary Fig. 4 Cadherin expression levels after E-CHO and N-CHO cells are incubated with Ca^{2+} and Tb^{3+} in the absence of trypsin. Western blot of (A) E-cadherin after E-CHO cells and of (B) N-cadherin after N-CHO cells were incubated with no ions (control), 1 mM EGTA, 1 mM Ca^{2+} , 1 mM Tb^{3+} , 1 mM $Ca^{2+} + 1$ mM Tb^{3+} , and 1 mM $Ca^{2+} + 2$ mM Tb^{3+} for 80 minutes. β -actin was used as a loading control. (C) Quantification of E-cad expression normalised to β -actin expressed as fold change relative to the no ion control. Scatterplots show individual values and bars represent the mean from three biological replicates (one-way ANOVA with Tukey's multiple comparisons test).

Supplementary Fig. 5 Relative positions of tryptophan residues, tyrosine residues and Ca²⁺binding sites in E-cadherin EC1-5. (A) Mouse E-cadherin EC1-5 crystal structure (PDB 3Q2V) with tryptophan residues in red and tyrosine residues in blue (both represented in Van der Waals surface). Ca²⁺ ions are represented as green spheres. Ca²⁺-binding sites are numbered 1-12 and are labelled with asterisks if they are within 10 Å of a tryptophan or tyrosine residue. (B) List of tryptophan and tyrosine residues in human and mouse E-cadherin EC1-5. Distances between tryptophan and tyrosine residues and proximal Ca²⁺-binding sites were measured in the crystal structure of mouse E-cadherin EC1-5 (PDB 3Q2V). Distances shown only for residues within 10 Å of a Ca²⁺-binding site.

9.9Å (8)