Supporting Information

High surface area 3D-MgO flowers as the modifier for working electrode for efficient detection of 4-chlorophenol

Khursheed Ahmad^a and Shaikh M. Mobin*a,b,c

^aDiscipline of Chemistry, ^bDiscipline of Biosciences and Bio-Medical Engineering and ^cDiscipline of Metallurgy Engineering and Material Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India

*Corresponding author: email: xray@iiti.ac.in

Tel: +91 7312438752

Fig. S1 FE-SEM image showing development of MgO 3D-flowers at different time interval (A-I).

Fig. S2 PXRD of $Mg_5(CO_3)_4(OH)_2.4H_2O$. Inset shows the SEM image of $Mg_5(CO_3)_4(OH)_2.4H_2O$.

Fig. S3 CV of freshly prepared **MgO 3D-flowers/GCE** sensor (black line) and after storage (red line) in presence of 4-CP in 0.1 M PBS (pH=7.0).

S. No.	Surface morphology	Specific surface	Synthetic process	References
		area (m²/g)		
1.	MgO Microspheres	135	Hydrothermal	5
2.	MgO flowers	45	Hydrothermal	8
3.	MgO microspheres	140.9	Precipitation	16
4.	MgO rods	115	Hydrothermal	33
5.	MgO big flowers	82	Hydrothermal	33
6.	MgO small flowers	87	Hydrothermal	33
7.	MgO cubes	33	Hydrothermal	33
8.	MgO plates	75	Hydrothermal	33
9.	MgO cubes	94	Hydrothermal	34
10.	MgO sheets	190.69	Hydrothermal	35
11.	Mgo 3D-flowers	218	Reflux	This work

 Table S1. Comprising of specific surface area of MgO 3D-flowers with reported MgO.

 Table S2. EIS parameters calculated for GCE and MgO 3D-flowers/GCE sensor.

Circuit Parameters	Bare GCE	MgO 3D-flowers/GCE sensor
$\mathbf{R}_{1}(\mathbf{\hat{\Omega}})$	90.8	76.2
$\mathbf{R}_2(\Omega)$	6610	1970

Where R_1 = Resistance due to electrolyte.

 R_2 = Raterials Charge transfer resistance.