Supporting Information

Bioinspired carbon dots: From Rose petals to tunable emissive nanodots

Vinay Sharma,[†] Sandip K. Singh,[‡] and Shaikh M. Mobin^{*,†,‡,§}

[†]Discipline of Biosciences and Bio-Medical Engineering, [‡]Discipline of Chemistry, [§]Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore 453552, India

*Corresponding author Email: xray@iiti.ac.in (Shaikh M. Mobin)

Tel.: +91-731-2438752

Contents

Materials & Instrumentation

NMR studies

Fig. S1. High resolution XPS spectra of N-S@RCD: (a) C1s, (b) N1s, (c) O1s and (d) S2p.

Fig. S2. High resolution TEM (HR-TEM) of N-S@RCD.

Fig. S3. LC-MS chromatogram of (a) RE, (b) RE-I and (c) **N-S@RCD**. The chromatogram were recorded using positive mode.

Fig. S4. Change in UV-Vis spectrum for NSR-1h to N-S@RCD.

Table S1. Elemental analysis of RE, RE-I and N-S@RCD samples

Table S2. Green precursor derived carbon dots and respective QY

Materials & Instrumentation

Rose flowers (*Rosa indica*) were purchased from local market. Ethylenediamine, l-cysteine and dimethyl sulfoxide-d₆ was procured from Sigma Aldrich. Chemicals were used without further purification. Deionized water from Sartorius Milli-Q system was used throughout the study. The PXRD was performed on Rigaku Smart Lab X-ray diffractometer having CuK_{α} radiation of 1.54 Å. The UV-visible was carried out using Varian Cary 100 Bio UV-visible spectrophotometer. The XPS was performed on AXIS ULTRA. Thermo-Flash 2000 elemental analyzer was used for elemental analysis. The TEM and HR-TEM studies were performed on a FEI Tecnai G2 F20 Transmission electron microscope. A Bruker-Daltonics micro TOF-QII mass spectrometer was used for mass analysis. The fluorescence measurements were performed on Fluoromax spectrofluorometer.

NMR studies

The 1D (¹H & ¹³C) and 2D (¹H/¹³C) heteronuclear multiple bond correlation (HMBC) & (¹H/¹H) homonuclear correlation spectroscopy (COSY) NMR spectra were recorded after dissolving ca. 25 ± 0.02 mg of RE, NSR-1h/2h/3h/4h and N-S@RCD samples in 600 µL dimethyl sulfoxide-d₆. The 400.13 MHz frequency Bruker Avance- 400 NMR instrument was used for NMR spectra at 25 ± 2 °C in dimethyl sulfoxide-d₆ and the reference proton and carbon peaks are considered at 2.50 and 39.50 ppm respectively.

Fig. S1. High resolution XPS spectra of N-S@RCD: (a) C1s, (b) N1s, (c) O1s and (d) S2p.

Fig. S2. High resolution TEM (HR-TEM) of N-S@RCD.

Fig. S3. LC-MS chromatogram of (a) RE, (b) RE-I and (c) **N-S@RCD**. The chromatograms were recorded using positive mode.

Fig. S4. Change in UV-Vis spectrum for NSR-1h to N-S@RCD.

Element	Atomic Percentage			
	RE	RE-I	N-S@RCD	
Carbon	37.58	32.70	42.20	
Hydrogen	5.49	9.17	2.39	
Nitrogen	3.33	22.27	14.52	
Sulfur	-	7.63	4.80	
Oxygen*	53.60	28.23	36.09	
C/N ratio	10.08	1.47	2.91	
C/S ratio	0	4.29	8.79	
*calculated based on C, H, N & S analysis by using oxygen (%) = 100- (carbon %+				
hydrogen% + nitrogen% + sulfur%)				

Table S1. Elemental analysis of RE, RE-I and N-S@RCD samples

Table S2. Green precursor derived carbon dots and respective QY

S. No.	Green Source	Quantum Yield (%)	Ref
1	Mango	0.48-3.92	1
2	Chicken egg	6-8	2
3	Waste Frying oil	3.66	3
4	Soy milk	2.6	4
5	Coffee grounds	3.8	5
6	Rose petals	9.6	This work

References

- 1 C. J. Jeong, A. K. Roy, S. H. Kim, J.-E. Lee, J. H. Jeong, I. In and S. Y. Park, *Nanoscale*, 2014, **6**, 15196–15202.
- 2 J. Wang, C.-F. Wang and S. Chen, *Angew. Chem. Int. Ed.*, 2012, **51**, 9297–9301.
- 3 Y. Hu, J. Yang, J. Tian, L. Jia and J.-S. Yu, *Carbon*, 2014, **77**, 775–782.
- 4 C. Zhu, J. Zhai and S. Dong, Chem. Commun., 2012, 48, 9367–9369.
- 5 P.-C. Hsu, Z.-Y. Shih, C.-H. Lee and H.-T. Chang, *Green Chem.*, 2012, **14**, 917–920.