Supplementary Information (SI)

Phase evolution in calcium molybdate nanoparticles as a function of synthesis temperature and its electrochemical effect on energy storage

^{1,2}Manickam Minakshi^{*}, ³David R.G. Mitchell, ²Christian Baur, ²Johann Chable, ⁴Anders J. Barlow and ²Maximilian Fichtner^{*}

¹ Engineering and Information Technology, Murdoch University, WA 6150, Australia ²Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Ulm 89081, Germany

³Electron Microscopy Centre, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia ⁴Centre for Materials and Surface Science, La Trobe University, Bundoora, VIC 3086, Australia

Amitava Banerjee ⁵, Sudip Chakraborty⁵, and Rajeev Ahuja^{5, 6}

⁵Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, S-75120, **Sweden** ^{5,6}Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm, **Sweden**

The supplementary information (SI) contains four figures (Figs. S1 - S4).

Experimental (in-situ powder XRD)

In-situ PXRD experiments were conducted by using a STOE STADI-p diffractometer in transmission geometry with Mo K α 1 radiation (0.70932 Å), equipped with a DECTRIS MYTHEN 1K strip detector and a STOE capillary furnace. The samples were introduced in quartz capillaries and heated at a rate of 10° C min⁻¹ from room temperature (RT) to 600 °C and subsequently naturally cooled down to RT. PXRD patterns were recorded every 50 °C with 30 min exposure time after a 10 min rest to ensure that the samples were at the required temperature.

Figure S1 Baseline corrected X-ray diffraction (XRD) patterns of CaMoO₄ synthesized at 300 (red) and 500 °C (black), shown in the main article, Fig. 1. After subtracting the pattern from the 500 °C sample, an automatic background is calculated using the X'Pert Highscore software with the following parameters: subdivision = 18, curvature factor = 3.

Figure S2 Details of the X-ray diffraction patterns shown in the main article, Fig. 1a and Fig. 1b respectively. The pattern illustrates the (211) and (114) reflections of CaMoO₄ in the narrow 2θ region. Minor differences in peak separation and relative intensities were observed.

(b)

(c)

Figure S3 (a) X-ray diffraction (XRD), and (b) corresponding thermal patterns of CaMoO₄ synthesized from room temperature to 600 °C, various profiles are stacked in the image. Figure S2 (c) shows a higher resolution patterns for the synthesis temperature of interest, from 300 °C to 500 °C.

Figure S4 (a) Cyclic voltammetry (CV), and (b) charge-discharge profiles (single electrode study / three-electrode configuration) of CaMoO₄ (500 °C) at different potential regions. The electrode is cycled in the whole region 1.6 V window vs. Hg/HgO, respectively. Scan rates are indicated in the figure. Consecutive charge-discharge cycles at 1 A/g are shown for 1000 seconds shows a shorter time to charge and discharge.