Interfacial Engineering of Carbon Dots with Benzenediboronic Acid for Fluorescent Biosensing

Min Pan, Zhen Xu, Qunying Jiang, Jie Feng, Junlin Sun, Fuan Wang, and Xiaoqing Liu*

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.

* To whom correspondence should be addressed. E-mail: xiaoqingliu@whu.edu.cn.

Table of Contents

Figure S1. XRD pattern for the CDs	S2
Figure S2. FTIR spectra of citric acid and CDs	S3
Figure S3. XPS spectra of CDs.	S4
Figure S4. AFM characterization	S5
Figure S5. Fluorescent intensity change of 3-hydroxybutyrate -derived CDs	S6
Figure S6. Stern–Volmer plot of the sensing system	S7
Figure S7. Florescence lifetime decay of the CDs	S8
Figure S8. Optimization of reaction conditions for H ₂ O ₂ assay	S9
Table S1. Analysis of glucose by different sensing procedures.	S10
Reference	S11

Figure S1. XRD pattern of the CDs

Figure S3. (A) XPS spectrum of CDs. (B) O 1s spectra of the CDs. (C) C 1s spectra of the CDs.

Figure S4. AFM image of CDs (A), and BDBA-associated CDs before (B) and after (C) H_2O_2 incubation. Inset: Cross-section analysis of each sample.

Figure S5. Fluorescence intensity changes of 3-hydroxybutyrate -derived CDs in the absence (a) and presence (b) of BDBA, in the presence of BDBA and in the absence of H_2O_2 (c), and in the absence of both BDBA and H_2O_2 (d).

Figure S6. Stern–Volmer plot or the interaction of BDBA-conjugated CDs and H₂O₂.

Figure S7. Fluorescence lifetime decay of the CDs (a), BDBA-conjugated CDs in the absence (b) and presence (c) of H_2O_2 .

Figure S8. Optimization of reaction conditions for H_2O_2 assay using the sensing platform. Both the concentration of BDBA and H_2O_2 are 75 μ M. (A) Dependence of reaction pH on the fluorescence intensity of CDs. (B) Effect of reaction time on the fluorescence intensity of the system. (C) Effect of BDBA concentration on the fluorescence intensity changes of CDs. ΔF = F_0 - F, F_0 and F represent the fluorescence intensity in the absence and presence of the H_2O_2 , respectively. Error bars were derived from n = 5 experiments.

Method	System	Detection limit	Reference
		(µM)	
colorimetric	Pt nanoclusters	0.28	[1]
colorimetric	in situ growth of silver nanoparticles on	0.17	[2]
	graphene quantum dots		
electrochemical	gold nanoparticle/nitrogen-doped graphene	12	[3]
electrochemical	bimetallic Pt-Au nanocatalysts	7.7	[4]
fluorescence	CdS quantum dots assembled on silver	1860	[5]
	nanoparticles		
fluorescence	graphene quantum dots with boronic acid	1000	[6]
	appended bipyridinium salt		
fluorescence	B-doped carbon quantum dots	8	[7]
fluorescence	MnO ₂ nanosheet-modified upconversion	3.7	[8]
	nano system		
fluorescence	carbon nanodots supported on silver	1.39	[9]
	nanoparticles		
fluorescence	BDBA-mediated fluorescence changes of	0.4	This work
	CDs		

 Table S1. Analysis of glucose by different sensing procedures.

Reference

- [1] L. Jin, Z. Meng, Y. Zhang, S. Cai, Z. Zhang, C. Li, L. Shang and Y. Shen, *ACS Appl. Mater. Interfaces*, 2017, 9, 10027-10033.
- [2] S. Chen, X. Hai, X. W. Chen, J. H. Wang, Anal. Chem., 2014, 86, 6689-6694.
- [3] T. D. Thanh, J. Balamurugan, S. H. Lee, N. H. Kim, J. H. Lee, *Biosens. Bioelectron.*, 2016, 81, 259-267.
- [4] Y. Tang, Q. Yang, T. Wu, L. Liu, Y. Ding, B. Yu, Langmuir, 2014, 30, 6324.
- [5] S. Nantaphol, T. Watanabe, N. Nomura, W. Siangproh, O. Chailapakul, Y. Einaga, *Biosens. Bioelectron.*, 2017, 98, 76-82.
- [6] Y. H. Li, L. Zhang, J. Huang, R. P. Liang, J. D. Qiu, *Chem. Commun.*, 2013, 49, 5180-5182.
- [7] X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng, Analyst, 2014, 139, 2322-2325.
- [8] J. Yuan, Y. Cen, X. J. Kong, S. Wu, C. L. Liu, R. Q. Yu, X. Chu, ACS Appl. Mater. Interfaces, 2015, 7, 10548-10555.
- [9] J. L. Ma, B. C. Yin, X. Wu, B. C. Ye, Anal. Chem., 2017, 89, 1323-1328.