Electronic Supplementary Material (ESI)

A high-energy sodium-ion capacitor enabled by nitrogen/sulfur co-doped hollow carbon nanofiber anode and activated carbon cathode

Ke Liao,^a Huanwen Wang,^{*a} Libin Wang,^b Dongming Xu,^a Mao Wu,^a Rui Wang,^a

Beibei He,^a Yansheng Gong^a and Xianluo Hu*^b

^aEngineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material and Chemistry, China University of Geosciences, Wuhan 430074, China. E-mail: <u>wanghw@cug.edu.cn</u>

^bState Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. E-mail: <u>huxl@mail.hust.edu.cn</u>

Fig. S1 SEM images (a, b) of the bulk polyaniline particle aggregates, which were prepared by direct polymerization of aniline without any template.

Fig. S2 SEM images (a, b) of the N-HCNFs.

Fig. S3 SEM images (a, b) of the AC cathode.

 Table S1. Elemental composition of N/S-HCNTs at different temperatures, and N-HCNTs (Atomic %).

Sample	С	0	Ν	S
N/CNFs	86.59%	5.54%	7.87%	
S-N/CNFs-700	84.28%	5.15%	7.44%	3.13%
S-N/CNFs-800	84.11%	5.74%	7.01%	3.15%
S-N/CNFs-900	86.47%	5.39%	5.26%	2.88%

Fig. S4 High-resolution XPS spectra of C1s (a) and N1s (b) in N-HCNFs.

Fig. S5 Charge and discharge curves of as-synthesized N-HCNFs (a) and N-n-HCNFs (b) at different current densities.

Fig. S6 Charge and discharge curves of as-synthesized N/S-HCNFs (a), N-HCNFs (b) and N-n-HCNFs (c) at 1st, 300th and 800th at 0.5 A g^{-1} .

Fig. S7 The plots of $i/v^{1/2}$ vs $v^{1/2}$ used for calculating constants a_1 and a_2 for the cathodic process. of N/S-HCNFs (a) and N-HCNFs (c). The plots of $i/v^{1/2}$ vs $v^{1/2}$ used for calculating constants a_1 and a_2 for the anodic process of N/S-HCNFs (b) and N-HCNFS (d).

Fig. S8 Electrochemical impedance spectra (EIS) of N/S-HCNFs, N-HCNFs and N-n-HCNFs

Fig. S9 Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of commercial AC. Electrochemical properties of the AC electrode in a Na half-cell between 2.5 and 4.5 V vs. Na/Na⁺. (c) Charging/discharging curves of the AC electrode at 1st, 50th and 100th at 0.1 A g^{-1} . (d) Specific capacities at different current densities. (e) Cycling performance at 5 A g^{-1} .

Fig. S10 Rate performance of the as-assembled NIC at different current densities based on the total mass of S-N/CNTs and AC.

Table S2 Comparison of electrochemical performances for anodes of SIBs betweenour N/S-HCNFs and carbon-based materials reported previously.

Anode material	Cyclability (mA h g ⁻¹)	Rate capability (mA h g ⁻¹)	Refs	
N/S-HCNFs	224 at 0.5 A g^{-1} after 800 cycles; 202.3 at 5 A g^{-1} after 3000 cycles	446 at 0.05 A g ⁻¹ ; 180 at 10 A g ⁻¹	This work	
Cellulose-derived carbon nanofibers	176 at 0.2 A g ⁻¹ after 600 cycles	255 at 0.04 A g^{-1} 85 at 2 A g^{-1}		
Nanocellular carbon foams	137 at 0.1 A g ⁻¹ after 300 cycles	140 at 0.2 A g ⁻¹ 50 at 5A g ⁻¹	2	
N-doped carbon nanosheets	155 at 0.05 A g ⁻¹ after 200 cycles	190 at 0.2 A g ⁻¹ 45 at 5A g ⁻¹	3	
Expanded graphite	150 at 0.1 A g ⁻¹ after 2000 cycles	284 at 0.2 A g ⁻¹ 91 at 2A g ⁻¹	4	
Banana peel pseudographite	298 at 0.1 A g ⁻¹ after 300 cycles	290 at 0.2 A g ⁻¹ 70 at 5A g ⁻¹	5	
Free standing porous carbon nanofibers	266 at 0.05 A g ⁻¹ after 100 cycles	300 at 0.05 A g ⁻¹ 60 at 10A g ⁻¹	6	
Nanoporous hard carbon	289 at 0.02 A g ⁻¹ after 100 cycles	307 at 0.02 A g^{-1} 95 at 0.5A g^{-1}	7	
N-doped bamboo- like carbon nanotubes	100 at 0. 5 A g ⁻¹ after 100 cycles	270 at 0.1 A g ⁻¹ 81 at 1.0A g ⁻¹	8	
honeycomb carbon bubbles	209 at 0. 1 A g ⁻¹ after 400 cycles	359 at 0.05 A g ⁻¹ 112 at 5.0A g ⁻¹	9	
S-doped disordered carbon	271 at 1.0 A g ⁻¹ after 1000 cycles	516 at 0.02 A g ⁻¹ 211 at 2.0A g ⁻¹	10	

N-doped carbon nanofiber films	377 at 0.1 A g ⁻¹ after 1000 210 at 5.0 A g ⁻¹ after 7000 cycles	315 at 0.02 A g ⁻¹ 154 at15A g ⁻¹	11
Hierarchical N/S- codoped carbon	150 at 0.5 A g ⁻¹ after 3400 cycles	280 at 0.03 A g^{-1} 130 at 10 A g^{-1}	12
S-doped N-rich carbon nanosheets	350 at 0.05 A g ⁻¹ after 100 cycles; 211 at 1.0 A g ⁻¹ after 1000 cycles	350 at 0.05 A g ⁻¹ 110 at 10A g ⁻¹	13
Oatmeal derived N- doped carbon Microspheres	360 at 0.05 A g ⁻¹ after 50 cycles; 104 at 10 A g ⁻¹ after 12500 cycles	330 at 0.05 A g ⁻¹ 102 at 10A g ⁻¹	14
Rod-like ordered mesoporous carbons	159 at 0.1 A g ⁻¹ after 100 cycles; 100 at 0.5 A g ⁻¹ after 1000 cycles	230 at 0.05 A g ⁻¹ 120 at 1.0 A g ⁻¹	15
Polydopamine derived carbon	508 at 0.05 A g ⁻¹ after 1000 cycles	433 at 0.1 A g^{-1} 122 at 3.0 A g^{-1}	16
3DFramework Carbon from	205 at 0.5 A g ⁻¹ after 1000 cycles;79 at 10A g ⁻¹ after 1000cycles	426 at 0.1 A g ⁻¹ 77 at 10.0 A g ⁻	17

Materials (anode//cathode)	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Cycling stability	Ref
S-N/CNTs//AC	116.12	20000	81%, 3000cycles	This work
PI-2.5//AC(PI-5)	66	1200	82.4%,1000cycles	18
CS-800//CS-800-6	52.2	3000	85.7%,2000cycles	19
NVP@AC//NVP@AC	26	5424	64.5%,10000cycles	20
Na ₂ Ti ₃ O ₇ -CNT//AC	58.5	3000	75%, 4000 cycles	21
Nb ₂ O ₅ @C/rGO//AC	76	80	100%,3000cycles	22
NiCo ₂ O ₄ //AC	13.8	308	61.2%2000 cycles	23
Na-TNT//AC	34	889	80%,1000cycles	24

Table S3 Comparison of electrochemical performances of other reported AC-basedNICs or LICs with our NIC.

References

- W. Luo, J. Schardt, C. Bommier, B. Wang, J. Razink, J. Simonsen and X. Ji, *Journal of Materials Chemistry A*, 2013, 1, 10662.
- Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Chen, Z. Nie, M. Gu, L. V. Saraf, G. Exarhos, J. G. Zhang and J. Liu, *Nano letters*, 2013, 13, 3909-3914.
- H. G. Wang, Z. Wu, F. L. Meng, D. L. Ma, X. L. Huang, L. M. Wang and X. B. Zhang, *ChemSusChem*, 2013, 6, 56-60.
- 4. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings and C. Wang, *Nature communications*, 2014, **5**, 4033.
- E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton and D. Mitlin, ACS nano, 2014, 8, 7115-7129.
- W. Li, L. Zeng, Z. Yang, L. Gu, J. Wang, X. Liu, J. Cheng and Y. Yu, *Nanoscale*, 2014, 6, 693-698.
- 7. S. J. R. Prabakar, J. Jeong and M. Pyo, *Electrochimica Acta*, 2015, 161, 23-31.
- D. D. Li, L. Zhang, H. B. Chen, L. X. Ding, S. Q. Wang and H. H. Wang, *Chemical communications*, 2015, **51**, 16045-16048.
- G. Yang, H. Song, H. Cui and C. Wang, *Journal of Materials Chemistry A*, 2015, 3, 20065-20072.
- W. Li, M. Zhou, H. M. Li, K. L. Wang, S. J. Cheng and K. Jiang, *Energy & Environmental Science*, 2015, 8, 2916-2921.
- S. Wang, L. Xia, L. Yu, L. Zhang, H. Wang and X. W. D. Lou, *Advanced Energy Materials*, 2016, 6, 1502217.
- D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang and L. Zhang, *Advanced Energy Materials*, 2016, 6, 1501929.
- 13. J. Yang, X. Zhou, D. Wu, X. Zhao and Z. Zhou, Advanced materials, 2017, 29.
- D. Yan, C. Yu, X. Zhang, W. Qin, T. Lu, B. Hu, H. Li and L. Pan, *Electrochimica Acta*, 2016, 191, 385-391.
- L. Yu, H. Song, Y. Li, Y. Chen, X. Chen, J. Zhou, Z. Ma, X. Wan, P. Tian and J. Wu, *Electrochimica Acta*, 2016, **218**, 285-293.
- T. Sun, Z. J. Li, H. G. Wang, D. Bao, F. L. Meng and X. B. Zhang, *Angew Chem Int Edit*, 2016, 55, 10662-10666.
- B. Yang, J. Chen, S. Lei, R. Guo, H. Li, S. Shi and X. Yan, *Advanced Energy Materials*, 2018, 8, 1702409.
- Q. Zhao, D. Yang, A. K. Whittaker and X. S. Zhao, *Journal of Power Sources*, 2018, 396, 12-18.
- S. J. Wang, R. T. Wang, Y. B. Zhang, D. D. Jin and L. Zhang, *Journal of Power Sources*, 2018, 379, 33-40.
- Z. L. Jian, V. Raju, Z. F. Li, Z. Y. Xing, Y. S. Hu and X. L. Ji, *Advanced Functional Materials*, 2015, 25, 5778-5785.
- S. Y. Dong, L. F. Shen, H. S. Li, P. Nie, Y. Y. Zhu, Q. Sheng and X. G. Zhang, *Journal of Materials Chemistry A*, 2015, 3, 21277-21283.
- E. Lim, C. Jo, M. S. Kim, M.-H. Kim, J. Chun, H. Kim, J. Park, K. C. Roh, K. Kang, S. Yoon and J. Lee, *Advanced Functional Materials*, 2016, 26, 3711-3719.

- 23. R. Ding, L. Qi and H. Wang, *Electrochimica Acta*, 2013, **114**, 726-735.
- 24. J. Yin, L. Qi and H. Wang, ACS applied materials & interfaces, 2012, 4, 2762-2768.