Electronic Supplementary Material (ESI) for Nanoscale Advances. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information (ESI)

Photocatalytic overall water splitting on Pt nanocluster-intercalated, restacked KCa₂Nb₃O₁₀ nanosheets: the promotional effect of co-existing ions

Takayoshi Oshima,^{a, b} Yunan Wang,^c Daling Lu,^d Toshiyuki Yokoi,^c and Kazuhiko Maeda^{*a}

^a Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2, Ookayama, Meguro-ku, Tokyo 152-8550 Japan

^b Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan

^c Nanospace Catalysis Unit, Institute of Innovative Research, Tokyo Institute of Technology,
4259-S2-5, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

^d Center for Advanced Materials Analysis, Tokyo Institute of Technology, 4259-R1-34, Nagatsuta-cho, Midori-ku, Yokohama 226-850, Japan

*To whom corresponding author should be addressed.

TEL: +81-3-5734-2239, FAX: +81-3-5734-2284

Email: <u>maedak@chem.titech.ac.jp</u>

Fig. S1. Time courses of H₂ and O₂ evolution over Pt/KCa₂Nb₃O₁₀ in aqueous solution containing KI (10 mM, red marks) or K₂SO₄ (5 mM, blue marks). Closed marks: H₂ and open marks: O₂. Reaction condition: Catalyst, 50 mg; reaction solution, 100 mL; light source, 300 W Xe lamp ($\lambda \ge$ 300 nm).

Fig. S2. XPS spectra for I 3d of bare $KCa_2Nb_3O_{10}$ and $Pt/KCa_2Nb_3O_{10}$. $Pt(out)/KCa_2Nb_3O_{10}$ was prepared by an impregnation method. Restacked $KCa_2Nb_3O_{10}$ and an aqueous H_2PtCl_6 solution (Pt 1.0 wt%) were placed on an evapolation dish, and the solution was dried up on a steam bath. The resulting powder was heated at 473 K for 1 h under a H_2 flow (20 mL min⁻¹), followed by stirring in an aqueous NaI solution (10 mM) overnight.

Fig. S3. H₂O adsorption isotherms for KCa₂Nb₃O₁₀ and NaCa₂Nb₃O₁₀. NaCa₂Nb₃O₁₀ was obtained by restacking TBA⁺/Ca₂Nb₃O₁₀⁻ nanosheet by an aqueous NaOH solution (2 M) instead of an aqueous KOH solution (2 M).