Ligand-assisted Reduction and Reprecipitation Synthesis of

Highly Luminescent Metal Nanoclusters

Yue Wang,^{a,b} Yu-e Shi, ^{a,b,*} Tizi Li,^a Henggang Wang,^a YanXiu Li,^c Yuan Xiong^c Shan Peng,^a and Zhenguang Wang^{a,b,*}

^aCollege of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R.
China. Email: wzg583@163.com
^bKey Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Baoding, 071002, P. R. China.
^cDepartment of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.[†]

Figure S1. XRD patterns of GSH (blue line) and Cu NCs (orange line).

Figure S2. Full XPS spectrum recorded on Cu NCs, showing the existence of all the expected elements, including C, O, N, S and Cu.

Figure S3. TGA curves of the Cu NCs under N_2 atmosphere.

Figure S4. Cytotoxicity of Cu NCs in 3T3 fibroblasts cells after 24 h incubation, evaluated by MTS assay.

Figure S5. Emission spectra of UV-LEDs chip employed for fabrication of the LED devices.

Table S1. Lifetimes (μ s) of luminescence (τ) and fraction of intensity (f, %) for mixture the Cu NCs recorded on different emission wavelength.

Detection wavelength (nm)	$ au_1$	$ au_2$
540	18.57(99.8)	210 (0.2)
555	21.71(99.5)	170(0.5)
570	23.97(99.4)	170(0.6)
585	25.54(99.3)	160(0.7)
600	26.17(99.3)	170(0.7)
615	25.56(99.0)	150(1.0)
630	23.90(99.2)	160(0.8)
645	21.94(99.2)	150(0.8)
660	19.85(99.1)	130(0.9)